
Ongoing Challenges
of

Large Page Sizes
Juan Yescas & Kalesh Singh

Google

Contiguous Memory Allocator (CMA)

 mynode: mynode {
compatible = "shared-dma-pool";
size = <0x02000000>;

 }

Contiguous Memory Allocator (CMA) - alignment

#define pageblock_order MAX_PAGE_ORDER

#define pageblock_nr_pages (1UL << pageblock_order)

#define CMA_MIN_ALIGNMENT_PAGES pageblock_nr_pages

#define CMA_MIN_ALIGNMENT_BYTES (PAGE_SIZE * CMA_MIN_ALIGNMENT_PAGES)

static int __init rmem_cma_setup(struct reserved_mem *rmem)
{

 ….

if (!IS_ALIGNED(rmem->base | rmem->size, CMA_MIN_ALIGNMENT_BYTES)) {
pr_err("Reserved memory: incorrect alignment of CMA region\n");
return -EINVAL;

}

…

}

See https://elixir.bootlin.com/linux/v6.9.4/source/arch/arm64/Kconfig#L1550

https://elixir.bootlin.com/linux/v6.11/C/ident/__init
https://elixir.bootlin.com/linux/v6.11/C/ident/rmem_cma_setup
https://elixir.bootlin.com/linux/v6.11/C/ident/reserved_mem
https://elixir.bootlin.com/linux/v6.11/C/ident/rmem
https://elixir.bootlin.com/linux/v6.1.93/C/ident/IS_ALIGNED
https://elixir.bootlin.com/linux/v6.1.93/C/ident/rmem
https://elixir.bootlin.com/linux/v6.1.93/C/ident/rmem
https://elixir.bootlin.com/linux/v6.1.93/C/ident/CMA_MIN_ALIGNMENT_BYTES
https://elixir.bootlin.com/linux/v6.1.93/C/ident/pr_err
https://elixir.bootlin.com/linux/v6.1.93/C/ident/EINVAL
https://elixir.bootlin.com/linux/v6.9.4/source/arch/arm64/Kconfig#L1550

Contiguous Memory Allocator (CMA) - default alignment and max alignment

 If ARCH_FORCE_MAX_ORDER is configured to the max MAX_PAGE_ORDER

PAGE_SIZE default MAX_PAGE_ORDER CMA_MIN_ALIGNMENT_BYTES

4KiB 10 4KiB * 1KiB = 4MiB

16Kib 11 16KiB * 2KiB = 32MiB

64KiB 13 64KiB * 8KiB = 512MiB

PAGE_SIZE max MAX_PAGE_ORDER CMA_MIN_ALIGNMENT_BYTES

4KiB 15 4KiB * 32KiB = 128MiB

16Kib 13 16KiB * 8KiB = 128MiB

64KiB 13 64KiB * 8KiB = 512MiB

/proc/locks

/proc/locks entries

In 16kb kernels, we have observed that the number of entries in /proc/locks increases
by 20% to 30% in comparison with 4kb kernels.

$ cat /proc/locks
1: POSIX ADVISORY WRITE 24570 fe:39:22685 0 EOF
2: POSIX ADVISORY READ 27148 fe:39:13802 128 128
3: POSIX ADVISORY READ 26662 fe:39:17567 128 128
4: POSIX ADVISORY READ 26662 fe:39:16145 1073741826 1073742335
5: POSIX ADVISORY READ 26589 fe:39:12434 128 128
6: POSIX ADVISORY READ 26589 fe:39:12427 1073741826 1073742335
7: POSIX ADVISORY READ 26279 fe:39:11353 128 128
8: POSIX ADVISORY READ 26279 fe:39:11340 1073741826 1073742335
9: POSIX ADVISORY READ 26078 fe:39:8860 128 128
10: POSIX ADVISORY WRITE 24570 fe:39:16588 0 EOF
11: POSIX ADVISORY WRITE 24570 fe:39:15318 1073
...
...
...

vm_area_struct
Slab Memory Increase

The loader reserves the VA space to
load the ELF as PROT non

Then maps in each segment laid out
relative to the PROT_NONE mapping
start according to the segment
vaddr

If the elf is built with
-Wl,-z,max-page-size=0x1000

On a 4KiB base-page-size device, the
segments are usually all laid out
contiguously in the VA space.

Loading 4KiB ELFs on 4KiB Devices

If the elf is built with
-Wl,-z,max-page-size=0x4000

On a 16KiB base-page-size device,
the segments are usually all laid out
contiguously in the VA space.

Loading 16KiB ELFs on 16KiB Devices

If the elf is built with
-Wl,-z,max-page-size=0x4000

On a 4KiB base-page-size device, the
segments discontiguous -- there are
PROT_NONE mapping between each
consecutive segment due to
segment alignment.

This leads to a huge increase in the
number of vm_area_structs and a
significant increase in VMA slab
memory usage.

This is the common case in Android.

Loading 16KiB ELFs on 4KiB Devices

If the elf is built with
-Wl,-z,max-page-size=0x4000

On a 4KiB base-page-size device, the
segments discontiguous -- there are
PROT_NONE mapping between each
consecutive segment due to
segment alignment.

This leads to a huge increase in the
number of vm_area_structs and a
significant increase in VMA slab
memory usage.

This is the common case in Android.

Loading 16KiB ELFs on 4KiB Devices

Option:

1. Unmap the “gap” PROT_NONE
VMAs

2. Extend the segment VMA to cover
the “gap”

Android extends the VMA to prevent
unrelated mapping between the ELF
segments.

Loading 16KiB ELFs on 4KiB Devices

Page Cache Read Ahead
and

ELF alignment

When the shared libraries and executables are compiled with:

 -Wl,-z,separate-loadable-segments

An extra padding is added between the segments and this
padding is a multiple of

 -Wl,-z,max-page-size=<value here>

The area in violet represents the the extra padding added.

This could increase the file size and has performance
penalties due the page cache readahead has to issue reads
to the block device for the zero blocks.

Page Cache Read Ahead and Reads

Filesystem Fault Around
And

Userspace Memory Accounting

File Systems that implement fault around populate the PTEs for the
pages in the page cache for the faulting VMA

This lead to userspace processes perceiving an increase in RSS due
to the pages brought in by read ahead.

Application developers monitor RSS metrics.

Limit the fault around to exclude padding range for ELF segments
VMAs

Ideally readahead wouldn’t bring in these pages to the page cache.

Page Cache Read Ahead and Fault Around

Discussion

Appendix

