


mTHP and SWAP allocator
Chris Li (Google) and Kairui Song(Tencent)



Help needed: SSD internal and write amplification factor

● Current SSD swap allocator might cause high write amplification factor.
● I want to provide options for SSD swap to reduce the write implications.
● It depends on vendor specific SSD algorithms.
● Please reach out to me if you know internal of how SSD garbage collects old erase blocks.



Swap Background

● Swap entries are just like memory pages, are system resources:
○ Has limited resource
○ Subject to page order and fragmentation.

● Swap entry allocation is a bin packing problem.
● New trend and challenge in swap usage:

○ Compression based: ZRAM Android, zswap data center
○ 0 or PMD order -> mTHP more order in between.
○ Nobody care about HDD swap?



Current Swap Allocator

● scan_swap_map_try_ssd_cluster
○ Limited single link list for empty cluster only
○ PMD size only
○ Only find the cluster, does not allocate from it.

● scan_swap_map_slots()
○ Pre allocated per swap entry swap_map array.
○ Actual allocation

● Complex relationship between cluster allocation and 
swap_map scan.
○ Try, fallback and retry.
○ Allocation conflict on free cluster list head.
○ Cluster allocation only works if there is empty cluster.
○ Random select cluster position otherwise.
○ Complex execution flow. 

● Complex execution flow.
● Order > 0 allocation failure rate is very high after exhaust free cluster list.



New Cluster Order based Swap Allocator

● “Do or do not. There is no try.”
● Not longer best effort, cluster allocation is a complete allocator.

○ Switch to double linked list for cluster.
○ Handle not empty cluster.
○ No cluster allocation conflict any more.
○ Find and allocate the swap entry together.

● Cluster are organized by cluster lists.
○ Each order has list, fit mTHP usage case better.
○ Many cluster list.

■ Free cluster list.
■ Nonfull/partial allocated list (per order).
■ fragmented list per order (per order).
■ Full list.

● Get rid of swap_map array scan(). Always ways allocate swap 
entry from cluster list.

● Easier to find the last few free swap entries.



Reducing the swap device lock contention

● There are two locks:
○ si->lock (swap info - device lock, big lock)
○ ci->lock (cluster info - cluster lock, per 2M swap cluster)

● Current swap allocator take these two locks together on 
allocation or freeing (*mostly):

First si->lock (per swap device big lock, contention!).

Then ci->lock (per 2M cluster).

● Cluster based operation provides the chance and 
motivation (performance and feasibility) to finally get rid of 
si->lock contention (as much as possible).

● New swap allocator want to use ci->lock as much as 
possible:
○ Reduce si->lock critical section, decouple list unrelated data, 
○ Reverse the dependency of si and ci lock.

■ si->lock only protect the cluster lists.



Reducing the swap device lock contention

● New allocator only need to take si->lock when touching 
cluster lists, operation inside one cluster only need 
ci->lock.
○ Operation in one cluster is the common case now.

● On freeing swap entry:
○ full list -> nonfull list -> free list
○ Most of the time stay in the nonfull list (512 entries), no list 

movement needed.
○ Can avoid si->lock on most freeing operations.
○ Get rid of swap slot cache on the free path? Yes.

● On allocating swap entry:
○ Just keep using same cluster as much as possible.

■ Which is already true.
○ Up to 512 entries serve as a local cache
○ Don’t need to touch the si->lock as long as the cluster is not 

drained.
○ Get rid of swap slot cache on the allocation path? Maybe…



Test and numbers

● Intree mTHP swap bench 
● tools/mm/thp_swap_allocator_test.c
● Synthesis for simulating certain app 

booting loop on Android / PC. 
● ~99% failure rate to ~0% for -a 

(aligned swap out)



Test and numbers

● mTHP allocation test with 
build-linux-kernel.

● Fallback drop from ~99% to ~1% 
- ~90% (<10% for 64K), high 
success rate for mTHP.

● SWAP fragmented overtime, 
even slight fragmentation will 
make larger order allocation 
struggle.

● Could be improved by:
○ Reserving part of SWAP as 

mTHP only, avoid 0 order 
from polluting these clusters.

○ Non-continuous swapout.



Test and numbers

● Performance
● 1~5% workload performance gain with first step, 

even without mTHP (mm-stable now).
● ~30% - ~40% workload performance gain with WIP 

patch, even without mTHP:
● Scaling up build linux kernel test:

With make -j96:
- make -j96 in 1G memcg (Before):

2506.66user 14856.77system 5:02.95elapsed
- Perf lock contention:
- `perf lock contention -ab sleep 5`
- Total Wait time on si->lock (1.6m in 5s)

- make -j96 in 1G memcg (After): ~35% faster
2637.94user 9384.29system 3:38.35elapsed
- Perf lock contention:
- `perf lock contention -ab sleep 5`
- Total Wait time on si->lock (<5s in 5s)



Questions?

● Chris Li <chrisl@kernel.org> , Kairui Song <kasong@tencent.com> 





Appendix



Test and numbers

● More impressive data on Android with 64K mTHP and optimized ZRAM
● Reference to another topic “mTHP swap-out and swap-in”



Test and numbers

● mTHP allocation test for 
memtier / build-linux-kernel

● Fallback drop from ~99% to ~1% 
- ~90% (<10% for 64K), high 
success rate for mTHP.

● SWAP heavily fragmented 
overtime, could be covered by 
non-continuous swapout


