LINnuX

Plumbers
Conference

a, Austria | September 18-20, 2024

MTHP and SWAP allocator

Chris Li (Google) and Kairui Song(Ten

= L LINUX PLUMBERS CONFERENCE | sex 5%, 3024

Help needed: SSD internal and write amplification factor

Current SSD swap allocator might cause high write amplification factor.

| want to provide options for SSD swap to reduce the write implications.

It depends on vendor specific SSD algorithms.

Please reach out to me if you know internal of how SSD garbage collects old erase blocks.

[[l ’ IV DITIMRERCT (¢ "\ l { rcpec ” .‘ ‘ ol ™ Vienna, Austria
LIINU/\ T LUIYIDLIN\ODO UUINT LLINLLINU L Sept. 18-20, 2024

Swap Background

o Swap entries are just like memory pages, are system resources:
o Has limited resource
o Subject to page order and fragmentation.

o Swap entry allocation is a bin packing problem.

e New trend and challenge in swap usage:
o Compression based: ZRAM Android, zswap data center
o 0 or PMD order -> mTHP more order in between.
o Nobody care about HDD swap?

" ; l 1IY PDITIMRERS N I { rcDCn ‘ ~C Vienna, Austria
L JA 11V | A0 R R Y H \' A Wy I Sept. 18-20, 2024

Current Swap Allocator

S D APt ey e Free
o Limited single link list for empty cluster only R R e '
o PMD size only . : : - : . : <: head]
o Only find the cluster, does not allocate from it. Cluster is | CI Cl Cl :
e scan_swap_map_slots() empty? e IR . sl s :
o Pre allocated per swap entry swap_map array. Go scan ci (cluster info)
o Actual allocation map e \4
o« Complex relationship between cluster allocation and - H@*# $
swap_map scan. SWAP MAP %5777
o Try, fallback and retry. Try
o Allocation conflict on free cluster list head.
o Cluster allocation only works if there is empty cluster. Some - JA
o Random select cluster position otherwise. Scan T T
o Complex execution flow. Select
« Complex execution flow. t@*#r g H@*HNMS
e Order > 0 allocation failure rate is very high after exhaust free cluster list. random 0/, 5777 0, 5777
next

P“H ~ Vienna, Austria
| A) I Sept. 18-20, 2024

New Cluster Order based Swap Allocator

e “Do or do not. There is no try.”

o Not longer best effort, cluster allocation is a complete allocator.

o Switch to double linked list for cluster.

o Handle not empty cluster.

o No cluster allocation conflict any more.

o Find and allocate the swap entry together.

e Cluster are organized by cluster lists.
o Each order has list, fit mTHP usage case better.

o Many cluster list.
m Free cluster list.
m Nonfull/partial allocated list (per order).
m fragmented list per order (per order).
m Full list.

o Get rid of swap_map array scan(). Always ways allocate swap
entry from cluster list.
o Easier to find the last few free swap entries.

si (swap info)

Free

Ci

ci (cluster info)
>

>
Ci

head

Nonfull [order]

head]‘n

Frag [order]
head

> -
| Cl I Cl Cl
>»
Cl Cl Cl
' = Vienna, Austria
L = Sept. 18-20, 2024

l
|

Full

head

Reducing the swap device lock contention

o There are two locks: si—->lock protection
o si->lock (swap info - device lock, big lock) : :
o ci->lock (cluster info - cluster lock, per 2M swap cluster) si counters, plist, etc.
o Current swap allocator take these two locks together on >» > » . 56k
allocation or freeing (*mostly): Ci Ci Ci G0
, , , _ _ protection
First si->lock (per swap device big lock, contention!).
Then ci->lock (per 2M cluster).
e Cluster based operation provides the chance and
motivation (performance and feasibility) to finally get rid of
si->lock contention (as much as possible).)) B
« New swap allocator want to use ci->lock as much as si counters, plist, etc.
possible: si—>lock > > > | . ock
o Reduce si->lock critical section, decouple list unrelated data, protection . . . Cl=> OC.)
o Reverse the dependency of si and ci lock. Ci Ci Cl protection
m Si->lock only protect the cluster lists.

L

!

LINUX PLUMBERS CONFERENCE | sept 20,2024

S

Reducing the swap device lock contention

New allocator only need to take si->lock when touching

cluster lists, operation inside one cluster only need

ci->lock.

o Operation in one cluster is the common case now.

On freeing swap entry:

o full list -> nonfull list -> free list

o Most of the time stay in the nonfull list (512 entries), no list
movement needed.

o Can avoid si->lock on most freeing operations.

o Get rid of swap slot cache on the free path? Yes.

On allocating swap entry:

o Just keep using same cluster as much as possible.
m Which is already true.

o Up to 512 entries serve as a local cache
o Don’t need to touch the si->lock as long as the cluster is not
drained.

o Get rid of swap slot cache on the allocation path? Maybe...

si—>lock

protection

si counters, plist, etc.*
———> NP

Only need

= (_ ° H
Ci i

_J;)\T)

~—> | ci->lock

&) < protection

Alloc / Free
v slots in
one cluster

si counters, plist, etc.*
4 % > N) '8

b S— <
Ci Ci

T

Moving a Cluster
info between lists

N> | ci->lock

: protection
ClI

NS

Vienna, Austria
Sept. 18-20, 2024

Test and numbers

e Intree mTHP swap bench

o tools/mm/thp_swap allocator_test.c mTHP (64k) Swapout Fallback
o Synthesis for simulating certain app

booting loop on Android / PC. == Before == After
e ~99% failure rate to ~0% for -a

. (0)
(aligned swap out) 100%
99% 99% 100% 100% 100% 100% 100% 100%
75% 89%

50%
25%

Oo/o 1 O/O O /O OO/O OO/O OO/O OO/O OO/O O /O OO/O
0%

° & & o g % % % % 2

*\'0 %@ {8) *\@ {\’0 {\@ *\'@ %@ {g) (&@
N V P N S S A O D \QQ

LINUX PLUMBERS CONFERENCE | sept 620, 2024

Test and numbers

e MTHP allocation test with
build-linux-kernel.

o Fallback drop from ~99% to ~1%
- ~90% (<10% for 64K), high
success rate for mTHP.

o« SWAP fragmented overtime,
even slight fragmentation will
make larger order allocation
struggle.

e Could be improved by:

o Reserving part of SWAP as
mTHP only, avoid O order
from polluting these clusters.

o Non-continuous swapout.

LINUX PLUMBERS CONFERENCE

Build Linux Kernel with mTHP enabled (single type of mTHP)

100.00%

75.00%

50.00%

25.00%

0.00%

B Swapout Success Rate (Before)

16K

32K

64Kk

128K 256K

Vienna, Austria
Sept. 18-20, 2024

512K

I Swapout Success Rate (After)

1024k

2048k

Test and numbers

e Performance

e 1~5% workload performance gain with first step,
even without mTHP (mm-stable now).

e ~30% - ~40% workload performance gain with WIP
patch, even without mTHP:

e Scaling up build linux kernel test:

Build Linux Kernel Test (si->lock rework), in seconds

B Before [After (si->lock reworked)

800

With make -j96:
- make -j96 in 1G memcg (Before):

2506.66user 14856.77system 5:02.95elapsed 600
- Perf lock contention:

- perf lock contention -ab sleep 5

- Total Wait time on si->lock (1.6m in 5s) 400
- make -j96 in 1G memcg (After): ¥35% faster
2637.94user 9384.29system 3:38.35elapsed
- Perf lock contention:

- perf lock contention -ab sleep 5 0

- Total Wait time on si->lock (<5s in 5s)

-j16 1 256M -j32 /1 512M -j64 1 1G -j96 /1 1G

LINUX PLUMBERS CONFERENCE | sept 620, 2024

Questions?

e Chris Li <chrisl@kernel.org>, Kairui Song <kasong@tencent.com>

LINUX PLUMBERS CONFERENCE | set 20,3024

LIinuX

Plumbers
Conference

a, Austria | September 18-20, 2024

Appendix

LINUX PLUMBERS CONFERENCE | se 5%, 3024

Test and numbers

e More impressive data on Android with 64K mTHP and optimized ZRAM
o Reference to another topic “mTHP swap-out and swap-in”

)

LINUX PLUMBI

RS CONF

ENC

Il

Vienna, Austria
Sept. 18-20, 2024

Test and numbers

» mMTHP allocation test for mTHP SWAP Success Rate (mixed usage, build-linux-kernel 5 times)
memtier / build-linux-kernel

o Fallback drop from ~99% to ~1% 0 Swapout Success Rate (Before) [Swapout Success Rate (After)
- ~90% (<10% for 64K), high
success rate for mTHP. 100.00%

o« SWAP heavily fragmented
overtime, could be covered by

non-continuous swapout
75.00%

50.00%

25.00%

0.00% . [

16kB 32kB 64kB 128kB 256kB 512kB 1024kB 2048kB

LINUX PLUMBERS CONFERENCE | set 3620, 2024

