guest memfd Huge TLB
support, continued

For 2025-11-13 guest_ memfd bi-weekly upstream call

Contact ackerleytng@google.com if you have questions/suggestions!

mailto:ackerleytng@google.com

Recap from 2 weeks ago

e guest memfd with HugeTLB
o == taking hugepages from HugeTLB, managing them in guest_memfd
e Phased introduction in 3 patch series + 1 prerequisite fix series

Proposal: Phased introduction in [stages]

e [st blocks] Track allocations in guest_ memfd, have guest memfd update
st_blocksin fstat()

e [HugeTLB support] Add HugeTLB support for either private-only or
shared-only use

e [HugeTLB restructuring] Let HugeTLB be used with conversions
o Restructuring: split directly from PUD_SIZE to PAGE_SIZE and merge directly back

e [Optimizing restructuring] Restructuring includes PMD_SIZE

[st_blocks] [HugeTLB support] [HugeTLB restructuring] [Optimizing restructuring]

[Huge TLB support]

What does this stage give guest_ memfd?

e Huge pages from HugeTLB
e Mappings in stage 2 page tables up to 1G level
e Mappings in host page tables up to 1G level

o To be explored after comments last week

e No conversions within guest_memfd
o All the above only if vm_mem_attributes = true
o Only legacy dual-backing - shared memory to be provided in memslots’ userspace_addr
o Conversions at the VM level (legacy)

[st_blocks] [HugeTLB support] [HugeTLB restructuring] [Optimizing restructuring]

[Huge TLB restructuring]

What does restructuring give us?

Last stage With restructuring

e Huge pages from HugeTLB
e Mappings in stage 2 page tables up to 1G level

e Mappings in host page tablesupto | e Mappings in host page tables up to

1G level 4K level
e No conversions within e Conversions within guest_memfd
guest_memfd o At PAGE_SIZE granularity

[st_blocks] [HugeTLB support] [HugeTLB restructuring] [Optimizing restructuring]

How is page sharing/conversion supported?

e Sharing of a page => host/rest of the kernel can use the page
e \When converting back to private, guest memfd must ensure that there are no

other users
o By checking refcounts

e Conversion is supported by splitting pages
e Split pages allow us to have per-page refcounts

[st_blocks] [HugeTLB support] [HugeTLB restructuring] [Optimizing restructuring]

When do we restructure?

e Allocation time: split if any page ranges are shared

e Conversion time:
o From private to shared: split pages to PAGE_SIZE
o From shared to private: merge pages to original size if entire range is private

e Truncation time: merge
o Removal of huge page from guest_ memfd ownership

[st_blocks] [HugeTLB support] [HugeTLB restructuring] [Optimizing restructuring]

How do we restructure?

e Use__split_folio() from kernel
o Add on undoing and re-application of HugeTLB Vmemmap Optimization (HVO)

e Currently experimenting with keeping folio in filemap during restructuring,

using xa_split_order()
o Extend this to split xarrays of higher shifts (for 1G => 4K split)

[st_blocks] [HugeTLB support] [HugeTLB restructuring] [Optimizing restructuring]

Conversion flow (TBD)

e On a per-HugeTLB page basis
o Lock out all (other) allocations, faults, truncations, conversions
o For shared to private conversions
m Unmap range from host userspace
m Fail with EAGAIN if there are elevated refcounts
Allocate memory for updating shared/private state in maple tree => may fail with ENOMEM
Restructure folios - splitting needs allocations => may fail with ENOMEM
— point of no return —
Set KVM'’s invalidation range up to the huge page (expanded from conversion range)
Split boundary leaves (TDX)
Unmap from stage 2 page tables
Commit updates to shared/private state in maple tree
Clean up invalidation range

o o0 0o o O o o o

[st_blocks] [HugeTLB support] [HugeTLB restructuring] [Optimizing restructuring]

Truncation CIUiI’kS (hence custom truncation from [st_blocks])

e Truncation requires merging, merging requires safe refcounts
o Different reason from conversions
m Conversion requires safe refcounts because we don’t want the host (holding the
elevated refcount) to have access to private memory
m Merging requires safe refcounts because the holder of the refcount is expecting a split
page, might cause problems if the page were suddenly larger than expected

e fallocate(PUNCH_HOLE) will fail (EAGAIN) if there are elevated refcounts

o Because we can fail fallocate(), and it is easier to handle
e But we can't fail truncations due to inode release, hence hook folio_put() to do

the merging
o Merging is complex, hence defer to kernel worker thread

[st_blocks] [HugeTLB support] [HugeTLB restructuring] [Optimizing restructuring]

Truncation on inode release

e Inode release: always try to merge in process context
e If some split page is still pinned

Mark page as requiring merge (with some page type)

Truncate it

Let folio_put() merge it
o => folio outlives inode

e folio put() will be called on each split page (eventually)
e Track pages yet to be merged in global data structure
o When pages yet to be merged == original folio nr_pages, do the merge

e Do the merge in a kernel worker thread (deferred)
o Because folio_put() can be called from atomic context

o O O

[st_blocks] [HugeTLB support] [HugeTLB restructuring] [Optimizing restructuring]

Why track allocated HugeTLB folio metadata?

Know the original size of the folio, when folio outlives inode

e Fewer fields to save/restore during folio restructuring
o __split_folio() doesn’t care about HugeTLB fields on the third struct page
o Track metadata at allocation, restore on free
m While folio is owned by guest_ memfd these fields are static anyway

e Memory failure will use this to answer the question “Does this pfn belong to
guest_memfd HugeTLB?” => handle guest memfd HugeTLB failure separately from

other folio types
e When offlining HugeTLB cgroups, hugetlb_cgroup_css_offline() will iterate
h->hugepage_activelist to move HugeTLB charges (nr_pages) to parent
Split folio => folio_nr_pages() is less than it should be

=> charge for full number of pages will not be moved
=> ook up this tracking to move charges, update charged cgroup

[st_blocks] [HugeTLB support] [HugeTLB restructuring] [Optimizing restructuring]

How to track allocated HugeTLB folio metadata?

e Multi-index XArray nicely lends itself to tracking folios by order
e Has to be tracked in the kernel itself, outside of K\VVM, since folio can outlive
inode (and KVM)

[st_blocks] [HugeTLB support] [HugeTLB restructuring] [Optimizing restructuring]

Code organization

e Have tracking and restructuring code in mm/hugetlb_restructuring.c
o (Name suggestions?)

e Built into the kernel, not in KVM module

[st_blocks] [HugeTLB support] [HugeTLB restructuring] [Optimizing restructuring]

Advertising support

e vm_memory_attributes are supported
o KVM_CAP_GUEST_MEMFD_FLAGS will include GUEST_MEMFD_FLAG_HUGETLB
e vm_memory_attributes = false
o KVM_CAP_GUEST_MEMFD_FLAGS will now include GUEST_MEMFD_FLAG_HUGETLB

[st_blocks] [HugeTLB support] [HugeTLB restructuring] [Optimizing restructuring]

Issues/Questions

e Should mmap() return a PUD_SIZE aligned address for guest_ memfd
PUD_SIZE-d HugeTLB?

e Deferred merge vs in process context: Yan's suggestion to merge if in process
context is great, does anyone know how best to check if code is called
atomic/process context? [1]

[1] https://lore.kernel.org/all/digzcy7d60e2.fsf@google.com/

[st_blocks] [HugeTLB support] [HugeTLB restructuring] [Optimizing restructuring]

https://lore.kernel.org/all/diqzcy7d60e2.fsf@google.com/

[Optimizing restructuring]

Why optimize restructuring?

e Splitting to PAGE_SIZE upon sharing loses too much HVO

o Based on usage patterns of shared pages, optimizing could save ~160MB per VM
m =>upto40 VMs => 6GB savings
o Some more savings from fewer DPAMT entries (TDX)

e Splitting to PMD_SIZE is faster than splitting to PAGE_SIZE

o Performance numbers TBD

[st_blocks] [HugeTLB support] [HugeTLB restructuring] [Optimizing restructuring]

How to optimize restructuring?

e Upon conversion to shared, keep as many pages at PMD_SIZE
o Split only the ones converted to shared to PAGE_SIZE

e Same for merge, merge to as large a page size as possible, based on
shared/private status

[st_blocks] [HugeTLB support] [HugeTLB restructuring] [Optimizing restructuring]

Complexities

e HVO code today always removes optimization by splitting from PUD_SIZE to
PAGE_SIZE and optimizes back directly

e (Can achieve what we want (but inefficient)
o PUD_SIZE => PAGE_SIZE => PMD_SIZE

e \Vishal has done some investigation on direct PUD_SIZE to PMD_SIZE HVO
re-optimization

[st_blocks] [HugeTLB support] [HugeTLB restructuring] [Optimizing restructuring]

