
guest_memfd HugeTLB 
support, continued

For 2025-11-13 guest_memfd bi-weekly upstream call

Contact ackerleytng@google.com if you have questions/suggestions!

mailto:ackerleytng@google.com


Recap from 2 weeks ago

● guest_memfd with HugeTLB
○ == taking hugepages from HugeTLB, managing them in guest_memfd

● Phased introduction in 3 patch series + 1 prerequisite fix series



Proposal: Phased introduction in [stages]

● [st_blocks] Track allocations in guest_memfd, have guest_memfd update 
st_blocks in fstat()

● [HugeTLB support] Add HugeTLB support for either private-only or 
shared-only use

● [HugeTLB restructuring] Let HugeTLB be used with conversions
○ Restructuring: split directly from PUD_SIZE to PAGE_SIZE and merge directly back

● [Optimizing restructuring] Restructuring includes PMD_SIZE

[st_blocks] [HugeTLB support] [HugeTLB restructuring] [Optimizing restructuring]



[HugeTLB support]



● Huge pages from HugeTLB
● Mappings in stage 2 page tables up to 1G level
● Mappings in host page tables up to 1G level

○ To be explored after comments last week
● No conversions within guest_memfd

○ All the above only if vm_mem_attributes = true
○ Only legacy dual-backing - shared memory to be provided in memslots’ userspace_addr
○ Conversions at the VM level (legacy)

What does this stage give guest_memfd?

[st_blocks] [HugeTLB support] [HugeTLB restructuring] [Optimizing restructuring]



[HugeTLB restructuring]



What does restructuring give us?

● Mappings in host page tables up to 
1G level

● No conversions within 
guest_memfd

Last stage

● Mappings in host page tables up to 
4K level

● Conversions within guest_memfd
○ At PAGE_SIZE granularity

With restructuring

[st_blocks] [HugeTLB support] [HugeTLB restructuring] [Optimizing restructuring]

● Huge pages from HugeTLB
● Mappings in stage 2 page tables up to 1G level



● Sharing of a page => host/rest of the kernel can use the page
● When converting back to private, guest_memfd must ensure that there are no 

other users
○ By checking refcounts

● Conversion is supported by splitting pages
● Split pages allow us to have per-page refcounts

[st_blocks] [HugeTLB support] [HugeTLB restructuring] [Optimizing restructuring]

How is page sharing/conversion supported?



● Allocation time: split if any page ranges are shared
● Conversion time:

○ From private to shared: split pages to PAGE_SIZE
○ From shared to private: merge pages to original size if entire range is private

● Truncation time: merge
○ Removal of huge page from guest_memfd ownership

[st_blocks] [HugeTLB support] [HugeTLB restructuring] [Optimizing restructuring]

When do we restructure?



● Use __split_folio() from kernel
○ Add on undoing and re-application of HugeTLB Vmemmap Optimization (HVO)

● Currently experimenting with keeping folio in filemap during restructuring, 
using xa_split_order()

○ Extend this to split xarrays of higher shifts (for 1G => 4K split)

[st_blocks] [HugeTLB support] [HugeTLB restructuring] [Optimizing restructuring]

How do we restructure?



● On a per-HugeTLB page basis
○ Lock out all (other) allocations, faults, truncations, conversions
○ For shared to private conversions

■ Unmap range from host userspace
■ Fail with EAGAIN if there are elevated refcounts

○ Allocate memory for updating shared/private state in maple tree => may fail with ENOMEM
○ Restructure folios - splitting needs allocations => may fail with ENOMEM
○ — point of no return —
○ Set KVM’s invalidation range up to the huge page (expanded from conversion range)
○ Split boundary leaves (TDX)
○ Unmap from stage 2 page tables
○ Commit updates to shared/private state in maple tree
○ Clean up invalidation range

[st_blocks] [HugeTLB support] [HugeTLB restructuring] [Optimizing restructuring]

Conversion flow (TBD)



● Truncation requires merging, merging requires safe refcounts
○ Different reason from conversions

■ Conversion requires safe refcounts because we don’t want the host (holding the 
elevated refcount) to have access to private memory

■ Merging requires safe refcounts because the holder of the refcount is expecting a split 
page, might cause problems if the page were suddenly larger than expected

● fallocate(PUNCH_HOLE) will fail (EAGAIN) if there are elevated refcounts
○ Because we can fail fallocate(), and it is easier to handle

● But we can’t fail truncations due to inode release, hence hook folio_put() to do 
the merging

○ Merging is complex, hence defer to kernel worker thread

[st_blocks] [HugeTLB support] [HugeTLB restructuring] [Optimizing restructuring]

Truncation quirks (hence custom truncation from [st_blocks])



● Inode release: always try to merge in process context
● If some split page is still pinned

○ Mark page as requiring merge (with some page type)
○ Truncate it
○ Let folio_put() merge it
○ => folio outlives inode

● folio_put() will be called on each split page (eventually)
● Track pages yet to be merged in global data structure

○ When pages yet to be merged == original folio nr_pages, do the merge
● Do the merge in a kernel worker thread (deferred)

○ Because folio_put() can be called from atomic context

[st_blocks] [HugeTLB support] [HugeTLB restructuring] [Optimizing restructuring]

Truncation on inode release



● Know the original size of the folio, when folio outlives inode
● Fewer fields to save/restore during folio restructuring

○ __split_folio() doesn’t care about HugeTLB fields on the third struct page
○ Track metadata at allocation, restore on free

■ While folio is owned by guest_memfd these fields are static anyway
● Memory failure will use this to answer the question “Does this pfn belong to 

guest_memfd HugeTLB?” => handle guest_memfd HugeTLB failure separately from 
other folio types

● When offlining HugeTLB cgroups, hugetlb_cgroup_css_offline() will iterate 
h->hugepage_activelist to move HugeTLB charges (nr_pages) to parent

○ Split folio => folio_nr_pages() is less than it should be
○ => charge for full number of pages will not be moved
○ => look up this tracking to move charges, update charged cgroup

[st_blocks] [HugeTLB support] [HugeTLB restructuring] [Optimizing restructuring]

Why track allocated HugeTLB folio metadata? 



● Multi-index XArray nicely lends itself to tracking folios by order
● Has to be tracked in the kernel itself, outside of KVM, since folio can outlive 

inode (and KVM)

[st_blocks] [HugeTLB support] [HugeTLB restructuring] [Optimizing restructuring]

How to track allocated HugeTLB folio metadata? 



● Have tracking and restructuring code in mm/hugetlb_restructuring.c
○ (Name suggestions?)

● Built into the kernel, not in KVM module

[st_blocks] [HugeTLB support] [HugeTLB restructuring] [Optimizing restructuring]

Code organization



● vm_memory_attributes are supported
○ KVM_CAP_GUEST_MEMFD_FLAGS will include GUEST_MEMFD_FLAG_HUGETLB

● vm_memory_attributes = false
○ KVM_CAP_GUEST_MEMFD_FLAGS will now include GUEST_MEMFD_FLAG_HUGETLB

[st_blocks] [HugeTLB support] [HugeTLB restructuring] [Optimizing restructuring]

Advertising support



● Should mmap() return a PUD_SIZE aligned address for guest_memfd 
PUD_SIZE-d HugeTLB?

● Deferred merge vs in process context: Yan’s suggestion to merge if in process 
context is great, does anyone know how best to check if code is called 
atomic/process context? [1]

[st_blocks] [HugeTLB support] [HugeTLB restructuring] [Optimizing restructuring]

Issues/Questions

[1] https://lore.kernel.org/all/diqzcy7d60e2.fsf@google.com/

https://lore.kernel.org/all/diqzcy7d60e2.fsf@google.com/


[Optimizing restructuring]



● Splitting to PAGE_SIZE upon sharing loses too much HVO
○ Based on usage patterns of shared pages, optimizing could save ~160MB per VM

■ => up to 40 VMs => 6GB savings
○ Some more savings from fewer DPAMT entries (TDX)

● Splitting to PMD_SIZE is faster than splitting to PAGE_SIZE
○ Performance numbers TBD

[st_blocks] [HugeTLB support] [HugeTLB restructuring] [Optimizing restructuring]

Why optimize restructuring?



● Upon conversion to shared, keep as many pages at PMD_SIZE
○ Split only the ones converted to shared to PAGE_SIZE

● Same for merge, merge to as large a page size as possible, based on 
shared/private status

[st_blocks] [HugeTLB support] [HugeTLB restructuring] [Optimizing restructuring]

How to optimize restructuring?



● HVO code today always removes optimization by splitting from PUD_SIZE to 
PAGE_SIZE and optimizes back directly

● Can achieve what we want (but inefficient)
○ PUD_SIZE => PAGE_SIZE => PMD_SIZE 

● Vishal has done some investigation on direct PUD_SIZE to PMD_SIZE HVO 
re-optimization

[st_blocks] [HugeTLB support] [HugeTLB restructuring] [Optimizing restructuring]

Complexities


