guest memfd Huge TLB
support overview

For 2025-10-30 guest._ memfd bi-weekly upstream call

Contact ackerleytng@google.com if you have questions/suggestions!

mailto:ackerleytng@google.com

Discussion overview

e \Whatis guest memfd with HugeTLB?

e Phased introduction in ~3 patch series + 1 prerequisite fix series
o Required modifications to HugeTLB
m How guest memfd will use the modifications to HugeTLB
o UuAPI discussion
o Code organization

What is guest memfd with HugeTLB?

e Support for up to 1G page table mappings in stage 2 page tables

e Get huge pages from HugeTLB because
o HugeTLB will be the central place to manage memory on host machines for co-tenancy of
m non-CoCo VMs already using HugeTLB with
m CoCo VMs that have to use guest_ memfd and need huge pages
o Benefit from HugeTLB vmemmap optimization

e Will respect all of HugeTLB’s quotas, reservations, (cgroup) charging, etc

Proposal: Phased introduction in [stages]

e [st blocks] Track allocations in guest_ memfd, have guest memfd update
st_blocksin fstat()

o ~4 patches (1 of those selftests)

e [HugeTLB support] Add HugeTLB support for private-only guest memfd
o No INIT_SHARED, no restructuring
o ~30 patches (~15 of those selftests)

e [HugeTLB restructuring] Let HugeTLB be used with mmap() and conversions
o Restructuring: split directly from PUD_SIZE to PAGE_SIZE and merge directly back
o ~25 patches (8 of those selftests)

e [Optimizing restructuring] Restructuring includes PMD_SIZE
o ~10 patches (# selftests TBD)

[st_blocks] [HugeTLB support] [HugeTLB restructuring] [Optimizing restructuring]

[st blocks]

What/why st_blocks?

e Currently for (PAGE_SIZE guest memfd), st_blocks is always 0
o Allocations don’t change st_blocks in fstat()
e \Why update this?
o tmpfs and HugeTLBfs both update st_blocks
m guest_memfd should be consistent
o st_blocks lets userspace track actual memory usage per-file
m Cgroup usage tracking could work, but that’s at the process/cgroup level
e \Why is this a prerequisite?
o Not directly, but the implementation lends itself well to being used for HugeTLB

[st_blocks] [HugeTLB support] [HugeTLB restructuring] [Optimizing restructuring]

Implementation

e After allocating a folio for guest_ memfd, increment inode->i_blocks
e => Need custom truncation function to decrement inode->i_blocks
e (Custom truncation function needed for Huge TLB+restructuring support)

[st_blocks] [HugeTLB support] [HugeTLB restructuring] [Optimizing restructuring]

[Huge TLB support]

Recap: usage modes after Sean’s mmap fixes series

quest memfd only for private memory quest memfd for shared+private

e KVM module param e vm_memory_attributes =
vm_memory_attributes is true false

e Shared/private status tracked at e Shared/private status tracked in
VM level guest_memfd

e Conversions via e guest memfd ioctl
SET_MEMORY_ATTRIBUTES VM
joctl

e aka legacy dual backing e aka single backing

[st_blocks] [HugeTLB support] [HugeTLB restructuring] [Optimizing restructuring]

HugeTLB feature availability

quest memfd only for private memory quest memfd for shared+private

e Can use for private memory, shared e HUGETLB flag won’t be among the
memory must be from somewhere valid flags returned from
else
e INIT_SHARED and HUGETLB will be KVM_CAP_GUEST_MEMFD_FLAGS

mutually exclusive (EINVAL)
o To disable host faults, since memory will be
all private

e guest memfd conversion ioctls
already fail since
vm_memory_attributes allow the
VM ioctl and disable the guest_ memfd
joctl

[st_blocks] [HugeTLB support] [HugeTLB restructuring] [Optimizing restructuring]

Why no INIT_SHARED with HUGETLB?

e Must disable faulting of HugeTLB pages
e guest memfd uses core-mm’s fault handler, which does not handle mapping
of HugeTLB pages

o Unsetting the HugeTLB folio flag will interfere with HVO in guest_ memfd
m HVO functions check for the HugeTLB folio flag

e I'm assuming having core-mm map 1G pages is going to be complex, does
anyone know otherwise?

o Giving core-mm a HugeTLB folio results in WARN()
o Have not explored just unsetting the HugeTLB folio flag

[st_blocks] [HugeTLB support] [HugeTLB restructuring] [Optimizing restructuring]

What's the point of this stage?

e To introduce the feature in stages, reduce per-stage complexity
e Still useful for legacy dual-backing setups

e Important for introducing/exercising/testing:
o KVM'’s mapping at higher page levels than PAGE_SIZE
m KVM’s being limited to map at lower page levels even for huge pages, when base_gfn
is not aligned with guest_memfd offset.
o HugeTLB quota/reservations/statistics, required refactoring

[st_blocks] [HugeTLB support] [HugeTLB restructuring] [Optimizing restructuring]

HugeTLB folio usage in guest memfd (1)

e guest memfd creation time
o Validate order: only valid HugeTLB orders allowed
Create subpool just for this guest_memfd
Subpool size == guest_memfd size
guest_memfd will never use surplus HugeTLB pages
Charge reservations to cgroup on subpool creation
m => Reservations charged on guest_ memfd creation time

e Folio allocation time
o Charge usage to cgroup
o => Charge usage at allocation time, may be different cgroup from reservations
m Same as HugeTLB: reservations charged at mmap() time and usage charged at
allocation time

o O O O

[st_blocks] [HugeTLB support] [HugeTLB restructuring] [Optimizing restructuring]

HugeTLB folio usage in guest memfd (2)

e fallocate(): Allocate and punch hole at granularities smaller than
HugeTLB page size => EINVAL
e KVM faults (kvm_gmem_get_pfn())
o Return huge page, with max_order = folio_order(folio)
e Host faults disabled since memory always private (INIT_SHARED is disabled)
e Memory failure: should be supported via regular HugeTLB memory failure

handling
o TODO: testing this

[st_blocks] [HugeTLB support] [HugeTLB restructuring] [Optimizing restructuring]

HugeTLB refactoring: alloc_hugetlb_folio()

HugeTL Bfs quest_memfd

e Subpool stored on filesystem e Subpool is per-inode, stored on
mount inode

e Reservations stored on VMA e No VMA reservations

e Memory policy passed via e Memory policy stored on inode,
vma->vm_policy awkward to pass via (pseudo) VMA

e VMA required for allocation e Pages may not be mapped to

o HugeTLBfs uses a pseudo-vma userspace => no VMAs

[st_blocks] [HugeTLB support] [HugeTLB restructuring] [Optimizing restructuring]

HugeTLB refactoring: alloc_hugetlb_folio()

e Refactor to accept

o hstate

memory policy

interleaving index

whether to charge reservations to cgroup
whether to use existing reservations in hstate

o O O O

[st_blocks] [HugeTLB support] [HugeTLB restructuring] [Optimizing restructuring]

HugeTLB refactoring: alloc_hugetlb_folio()

e Refactor to accept

o hstate

memory policy

interleaving index

whether to charge reservations to cgroup
whether to use existing reservations in hstate

o O O O

[st_blocks] [HugeTLB support] [HugeTLB restructuring] [Optimizing restructuring]

Code organization

All functions will be under virt/kvm/

All functions built as part of the KVM module

Export HugeTLB functions for KVM module

Some HugeTLB function refactoring to encapsulate management of hstates

as an array
o Conceptof struct hstate * will still be used

[st_blocks] [HugeTLB support] [HugeTLB restructuring] [Optimizing restructuring]

Advertising support

e vm_memory_attributes are supported
o KVM_CAP_GUEST_MEMFD_FLAGS will include GUEST_MEMFD_FLAG_HUGETLB

e vm_memory_attributes = false
o KVM_CAP_GUEST_MEMFD_FLAGS will NOT include GUEST__MEMFD_FLAG_HUGETLB

e INIT_SHARED and HUGETLB are mutually exclusive

[st_blocks] [HugeTLB support] [HugeTLB restructuring] [Optimizing restructuring]

Known Issues

e Race during allocation of the same hugepage offset
o Losing thread will get ENOMEM since subpool is exhausted
o HugeTLB: losing thread will get a surplus page, realize it lost the race, free the surplus page
and share the page with the winning thread
m (guest memfd doesn’t support surplus pages)

e Untested memory failure handling

[st_blocks] [HugeTLB support] [HugeTLB restructuring] [Optimizing restructuring]

[Huge TLB restructuring]

What does restructuring give us?

e Being able to fault (split) HugeTLB pages
e => Can convert from private to shared
e INIT_SHARED and HUGETLB remain mutually exclusive

[st_blocks] [HugeTLB support] [HugeTLB restructuring] [Optimizing restructuring]

Why still no INIT_SHARED with HUGETLB?

Use case pointless?

INIT_SHARED with HUGETLB means every fault will result in split pages
If pages are always used as split => just use PAGE_SIZE guest memfd
Still possible to start all private and convert all to shared, but inefficient
Future: restriction would probably be unlocked when core-mm can fault at

higher levels from guest_ memfd
o Would be useful for non-CoCo VMs

[st_blocks] [HugeTLB support] [HugeTLB restructuring] [Optimizing restructuring]

When do we restructure?

e Split if any page ranges are shared at allocation time
e On conversion from private to shared, split pages to PAGE_SIZE
e On conversion from shared to private, merge pages to original size if entire
range is private
e Merge on truncation of entire page
o i.e. merge on removal of huge page from guest_ memfd ownership

[st_blocks] [HugeTLB support] [HugeTLB restructuring] [Optimizing restructuring]

How do we restructure?

e Use__split_folio() from kernel
o Add on undoing and re-application of HugeTLB Vmemmap Optimization (HVO)

e Currently experimenting with keeping folio in filemap during restructuring,

using xa_split_order()
o Signal boosting my question on xarrays here, would like help [1]

[1] https://lore.kernel.org/all/20251028223414.299268-1-ackerleythg@google.com/

[st_blocks] [HugeTLB support] [HugeTLB restructuring] [Optimizing restructuring]

https://lore.kernel.org/all/20251028223414.299268-1-ackerleytng@google.com/

Conversion flow (TBD)

e On a per-HugeTLB page basis
o Lock out all (other) allocations, faults, truncations, conversions
o For shared to private conversions
m Unmap range from host userspace
m Fail with EAGAIN if there are elevated refcounts
Allocate memory for updating shared/private state in maple tree => may fail with ENOMEM
Restructure folios - splitting needs allocations => may fail with ENOMEM
— point of no return —
Set KVM'’s invalidation range up to the huge page (expanded from conversion range)
Split boundary leaves (TDX)
Unmap from stage 2 page tables
Commit updates to shared/private state in maple tree
Clean up invalidation range

o o0 0o o O o o o

[st_blocks] [HugeTLB support] [HugeTLB restructuring] [Optimizing restructuring]

Truncation CIUiI’kS (hence custom truncation from [st_blocks])

e Truncation requires merging, merging requires safe refcounts
o Independent of conversion: conversion requires safe refcounts because we don’t want the
host (holding the elevated refcount) to have access to private memory

Why not just sum refcounts?
o Merging requires safe refcounts because the holder of the refcount is expecting a split page,
might cause problems if the page were suddenly larger than expected

e fallocate(PUNCH_HOLE) will fail (EAGAIN) if there are elevated refcounts

o Because we can fail fallocate(), and it is easier to handle
e But we can't fail truncations due to inode release, hence hook folio_put() to do

the merging
o Merging is complex, hence defer to kernel worker thread

[st_blocks] [HugeTLB support] [HugeTLB restructuring] [Optimizing restructuring]

Truncation on inode release

e Inode release: always try to merge in process context
e If some split page is still pinned, let folio_put() merge it
o =>folio outlives inode
e folio put() will be called on each split page (eventually)
e T[rack pages yet to be merged in global data structure
o When pages yet to be merged == original folio nr_pages, do the merge

e Do the merge in a kernel worker thread (deferred)

o Because folio_put() can be called from atomic context
o TODO: Yan’s suggestion to merge if in process context is great, does anyone know how best
to check if code is called atomic/process context? [1]

[1] https://lore.kernel.org/all/digzcy7d60e2.fsf@google.com/

[st_blocks] [HugeTLB support] [HugeTLB restructuring] [Optimizing restructuring]

https://lore.kernel.org/all/diqzcy7d60e2.fsf@google.com/

Why track allocated HugeTLB folio metadata?

Know the original size of the folio, when folio outlives inode

e Fewer fields to save/restore during folio restructuring
o __split_folio() doesn’t care about HugeTLB fields on the third struct page
o Track metadata at allocation, restore on free
m While folio is owned by guest_ memfd these fields are static anyway

e Memory failure will use this to answer the question “Does this pfn belong to
guest_memfd HugeTLB?” => handle guest memfd HugeTLB failure separately from

other folio types
e When offlining HugeTLB cgroups, hugetlb_cgroup_css_offline() will iterate
h->hugepage_activelist to move HugeTLB charges (nr_pages) to parent
Split folio => folio_nr_pages() is less than it should be

=> charge for full number of pages will not be moved
=> ook up this tracking to move charges, update charged cgroup

[st_blocks] [HugeTLB support] [HugeTLB restructuring] [Optimizing restructuring]

How to track allocated HugeTLB folio metadata?

e Multi-index XArray nicely lends itself to tracking folios by order
e Has to be tracked in the kernel itself, outside of K\VVM, since folio can outlive
inode (and KVM)

[st_blocks] [HugeTLB support] [HugeTLB restructuring] [Optimizing restructuring]

Code organization

e Have tracking and restructuring code in mm/hugetlb_restructuring.c
o (Name suggestions?)

e Built into the kernel, not in KVM module

[st_blocks] [HugeTLB support] [HugeTLB restructuring] [Optimizing restructuring]

Advertising support

e vm_memory_attributes are supported
o KVM_CAP_GUEST_MEMFD_FLAGS will include GUEST_MEMFD_FLAG_HUGETLB

e vm_memory_attributes = false
o KVM_CAP_GUEST_MEMFD_FLAGS will now include GUEST_MEMFD_FLAG_HUGETLB

e INIT_SHARED and HUGETLB remain mutually exclusive

[st_blocks] [HugeTLB support] [HugeTLB restructuring] [Optimizing restructuring]

Issues/Questions

e Should mmap() return a PUD_SIZE aligned address for guest_ memfd
PUD_SIZE-d HugeTLB?

[st_blocks] [HugeTLB support] [HugeTLB restructuring] [Optimizing restructuring]

[Optimizing restructuring]

Why optimize restructuring?

e Splitting to PAGE_SIZE upon sharing loses too much HVO
o Based on usage patterns of shared pages, optimizing could save ~160MB per VM
m =>upto40 VMs => 6GB savings
o Some more savings from fewer DPAMT entries (TDX)
e Splitting to PMD_SIZE is faster than splitting to PAGE_SIZE
o Numbers TBD

[st_blocks] [HugeTLB support] [HugeTLB restructuring] [Optimizing restructuring]

How to optimize restructuring?

e Upon conversion to shared, keep as many pages at PMD_SIZE
o Split only the ones converted to shared to PAGE_SIZE

e Same for merge, merge to as large a page size as possible, based on
shared/private status

[st_blocks] [HugeTLB support] [HugeTLB restructuring] [Optimizing restructuring]

Complexities

e HVO code today always removes optimization by splitting from PUD_SIZE to
PAGE_SIZE and optimizes back directly

e (Can achieve what we want (but inefficient)
o PUD_SIZE => PAGE_SIZE => PMD_SIZE

e \Vishal has done some investigation on direct PUD_SIZE to PMD_SIZE HVO
re-optimization

[st_blocks] [HugeTLB support] [HugeTLB restructuring] [Optimizing restructuring]

