
guest_memfd HugeTLB 
support overview
For 2025-10-30 guest_memfd bi-weekly upstream call

Contact ackerleytng@google.com if you have questions/suggestions!

mailto:ackerleytng@google.com


Discussion overview

● What is guest_memfd with HugeTLB?
● Phased introduction in ~3 patch series + 1 prerequisite fix series

○ Required modifications to HugeTLB
■ How guest_memfd will use the modifications to HugeTLB

○ uAPI discussion
○ Code organization



What is guest_memfd with HugeTLB?

● Support for up to 1G page table mappings in stage 2 page tables
● Get huge pages from HugeTLB because

○ HugeTLB will be the central place to manage memory on host machines for co-tenancy of
■ non-CoCo VMs already using HugeTLB with
■ CoCo VMs that have to use guest_memfd and need huge pages

○ Benefit from HugeTLB vmemmap optimization
● Will respect all of HugeTLB’s quotas, reservations, (cgroup) charging, etc



Proposal: Phased introduction in [stages]

● [st_blocks] Track allocations in guest_memfd, have guest_memfd update 
st_blocks in fstat()

○ ~4 patches (1 of those selftests)
● [HugeTLB support] Add HugeTLB support for private-only guest_memfd

○ No INIT_SHARED, no restructuring
○ ~30 patches (~15 of those selftests)

● [HugeTLB restructuring] Let HugeTLB be used with mmap() and conversions
○ Restructuring: split directly from PUD_SIZE to PAGE_SIZE and merge directly back
○ ~25 patches (8 of those selftests)

● [Optimizing restructuring] Restructuring includes PMD_SIZE
○ ~10 patches (# selftests TBD)

[st_blocks] [HugeTLB support] [HugeTLB restructuring] [Optimizing restructuring]



[st_blocks]



● Currently for (PAGE_SIZE guest_memfd), st_blocks is always 0
○ Allocations don’t change st_blocks in fstat()

● Why update this?
○ tmpfs and HugeTLBfs both update st_blocks

■ guest_memfd should be consistent
○ st_blocks lets userspace track actual memory usage per-file

■ Cgroup usage tracking could work, but that’s at the process/cgroup level
● Why is this a prerequisite?

○ Not directly, but the implementation lends itself well to being used for HugeTLB

What/why st_blocks?

[st_blocks] [HugeTLB support] [HugeTLB restructuring] [Optimizing restructuring]



● After allocating a folio for guest_memfd, increment inode->i_blocks
● => Need custom truncation function to decrement inode->i_blocks
● (Custom truncation function needed for HugeTLB+restructuring support)

Implementation

[st_blocks] [HugeTLB support] [HugeTLB restructuring] [Optimizing restructuring]



[HugeTLB support]



● KVM module param 
vm_memory_attributes is true

● Shared/private status tracked at 
VM level

● Conversions via 
SET_MEMORY_ATTRIBUTES VM 
ioctl

● aka legacy dual backing

Recap: usage modes after Sean’s mmap fixes series

[st_blocks] [HugeTLB support] [HugeTLB restructuring] [Optimizing restructuring]

guest_memfd only for private memory 

● vm_memory_attributes = 
false 

● Shared/private status tracked in 
guest_memfd

● guest_memfd ioctl

● aka single backing

guest_memfd for shared+private



● Can use for private memory, shared 
memory must be from somewhere 
else

● INIT_SHARED and HUGETLB will be 
mutually exclusive (EINVAL)

○ To disable host faults, since memory will be 
all private

● guest_memfd conversion ioctls 
already fail since 
vm_memory_attributes allow the 
VM ioctl and disable the guest_memfd 
ioctl

HugeTLB feature availability

[st_blocks] [HugeTLB support] [HugeTLB restructuring] [Optimizing restructuring]

guest_memfd only for private memory 

● HUGETLB flag won’t be among the 
valid flags returned from 
KVM_CAP_GUEST_MEMFD_FLAGS

guest_memfd for shared+private



● Must disable faulting of HugeTLB pages
● guest_memfd uses core-mm’s fault handler, which does not handle mapping 

of HugeTLB pages
○ Unsetting the HugeTLB folio flag will interfere with HVO in guest_memfd

■ HVO functions check for the HugeTLB folio flag
● I’m assuming having core-mm map 1G pages is going to be complex, does 

anyone know otherwise?
○ Giving core-mm a HugeTLB folio results in WARN()
○ Have not explored just unsetting the HugeTLB folio flag

Why no INIT_SHARED with HUGETLB?

[st_blocks] [HugeTLB support] [HugeTLB restructuring] [Optimizing restructuring]



● To introduce the feature in stages, reduce per-stage complexity
● Still useful for legacy dual-backing setups
● Important for introducing/exercising/testing:

○ KVM’s mapping at higher page levels than PAGE_SIZE
■ KVM’s being limited to map at lower page levels even for huge pages, when base_gfn 

is not aligned with guest_memfd offset.
○ HugeTLB quota/reservations/statistics, required refactoring

What’s the point of this stage?

[st_blocks] [HugeTLB support] [HugeTLB restructuring] [Optimizing restructuring]



● guest_memfd creation time
○ Validate order: only valid HugeTLB orders allowed
○ Create subpool just for this guest_memfd
○ Subpool size == guest_memfd size
○ guest_memfd will never use surplus HugeTLB pages
○ Charge reservations to cgroup on subpool creation

■ => Reservations charged on guest_memfd creation time
● Folio allocation time

○ Charge usage to cgroup
○ => Charge usage at allocation time, may be different cgroup from reservations

■ Same as HugeTLB: reservations charged at mmap() time and usage charged at 
allocation time

HugeTLB folio usage in guest_memfd (1)

[st_blocks] [HugeTLB support] [HugeTLB restructuring] [Optimizing restructuring]



● fallocate(): Allocate and punch hole at granularities smaller than 
HugeTLB page size => EINVAL

● KVM faults (kvm_gmem_get_pfn())
○ Return huge page, with max_order = folio_order(folio)

● Host faults disabled since memory always private (INIT_SHARED is disabled)
● Memory failure: should be supported via regular HugeTLB memory failure 

handling
○ TODO: testing this

HugeTLB folio usage in guest_memfd (2)

[st_blocks] [HugeTLB support] [HugeTLB restructuring] [Optimizing restructuring]



HugeTLB refactoring: alloc_hugetlb_folio()

[st_blocks] [HugeTLB support] [HugeTLB restructuring] [Optimizing restructuring]

● Subpool stored on filesystem 
mount

● Reservations stored on VMA
● Memory policy passed via 

vma->vm_policy
● VMA required for allocation

○ HugeTLBfs uses a pseudo-vma

HugeTLBfs

● Subpool is per-inode, stored on 
inode

● No VMA reservations
● Memory policy stored on inode, 

awkward to pass via (pseudo) VMA
● Pages may not be mapped to 

userspace => no VMAs

guest_memfd



● Refactor to accept 
○ hstate
○ memory policy
○ interleaving index
○ whether to charge reservations to cgroup
○ whether to use existing reservations in hstate

HugeTLB refactoring: alloc_hugetlb_folio()

[st_blocks] [HugeTLB support] [HugeTLB restructuring] [Optimizing restructuring]



● Refactor to accept 
○ hstate
○ memory policy
○ interleaving index
○ whether to charge reservations to cgroup
○ whether to use existing reservations in hstate

HugeTLB refactoring: alloc_hugetlb_folio()

[st_blocks] [HugeTLB support] [HugeTLB restructuring] [Optimizing restructuring]



● All functions will be under virt/kvm/
● All functions built as part of the KVM module
● Export HugeTLB functions for KVM module
● Some HugeTLB function refactoring to encapsulate management of hstates 

as an array
○ Concept of struct hstate * will still be used

Code organization

[st_blocks] [HugeTLB support] [HugeTLB restructuring] [Optimizing restructuring]



● vm_memory_attributes are supported
○ KVM_CAP_GUEST_MEMFD_FLAGS will include GUEST_MEMFD_FLAG_HUGETLB

● vm_memory_attributes = false
○ KVM_CAP_GUEST_MEMFD_FLAGS will NOT include GUEST_MEMFD_FLAG_HUGETLB

● INIT_SHARED and HUGETLB are mutually exclusive

Advertising support

[st_blocks] [HugeTLB support] [HugeTLB restructuring] [Optimizing restructuring]



● Race during allocation of the same hugepage offset
○ Losing thread will get ENOMEM since subpool is exhausted
○ HugeTLB: losing thread will get a surplus page, realize it lost the race, free the surplus page 

and share the page with the winning thread
■ (guest_memfd doesn’t support surplus pages)

● Untested memory failure handling

Known Issues

[st_blocks] [HugeTLB support] [HugeTLB restructuring] [Optimizing restructuring]



[HugeTLB restructuring]



● Being able to fault (split) HugeTLB pages
● => Can convert from private to shared
● INIT_SHARED and HUGETLB remain mutually exclusive

[st_blocks] [HugeTLB support] [HugeTLB restructuring] [Optimizing restructuring]

What does restructuring give us?



● Use case pointless?
● INIT_SHARED with HUGETLB means every fault will result in split pages
● If pages are always used as split => just use PAGE_SIZE guest_memfd
● Still possible to start all private and convert all to shared, but inefficient
● Future: restriction would probably be unlocked when core-mm can fault at 

higher levels from guest_memfd
○ Would be useful for non-CoCo VMs

[st_blocks] [HugeTLB support] [HugeTLB restructuring] [Optimizing restructuring]

Why still no INIT_SHARED with HUGETLB?



● Split if any page ranges are shared at allocation time
● On conversion from private to shared, split pages to PAGE_SIZE
● On conversion from shared to private, merge pages to original size if entire 

range is private
● Merge on truncation of entire page

○ i.e. merge on removal of huge page from guest_memfd ownership

[st_blocks] [HugeTLB support] [HugeTLB restructuring] [Optimizing restructuring]

When do we restructure?



● Use __split_folio() from kernel
○ Add on undoing and re-application of HugeTLB Vmemmap Optimization (HVO)

● Currently experimenting with keeping folio in filemap during restructuring, 
using xa_split_order()

○ Signal boosting my question on xarrays here, would like help [1]

[st_blocks] [HugeTLB support] [HugeTLB restructuring] [Optimizing restructuring]

How do we restructure?

[1] https://lore.kernel.org/all/20251028223414.299268-1-ackerleytng@google.com/

https://lore.kernel.org/all/20251028223414.299268-1-ackerleytng@google.com/


● On a per-HugeTLB page basis
○ Lock out all (other) allocations, faults, truncations, conversions
○ For shared to private conversions

■ Unmap range from host userspace
■ Fail with EAGAIN if there are elevated refcounts

○ Allocate memory for updating shared/private state in maple tree => may fail with ENOMEM
○ Restructure folios - splitting needs allocations => may fail with ENOMEM
○ — point of no return —
○ Set KVM’s invalidation range up to the huge page (expanded from conversion range)
○ Split boundary leaves (TDX)
○ Unmap from stage 2 page tables
○ Commit updates to shared/private state in maple tree
○ Clean up invalidation range

[st_blocks] [HugeTLB support] [HugeTLB restructuring] [Optimizing restructuring]

Conversion flow (TBD)



● Truncation requires merging, merging requires safe refcounts
○ Independent of conversion: conversion requires safe refcounts because we don’t want the 

host (holding the elevated refcount) to have access to private memory
○ Why not just sum refcounts?
○ Merging requires safe refcounts because the holder of the refcount is expecting a split page, 

might cause problems if the page were suddenly larger than expected
● fallocate(PUNCH_HOLE) will fail (EAGAIN) if there are elevated refcounts

○ Because we can fail fallocate(), and it is easier to handle
● But we can’t fail truncations due to inode release, hence hook folio_put() to do 

the merging
○ Merging is complex, hence defer to kernel worker thread

[st_blocks] [HugeTLB support] [HugeTLB restructuring] [Optimizing restructuring]

Truncation quirks (hence custom truncation from [st_blocks])



● Inode release: always try to merge in process context
● If some split page is still pinned, let folio_put() merge it

○ => folio outlives inode
● folio_put() will be called on each split page (eventually)
● Track pages yet to be merged in global data structure

○ When pages yet to be merged == original folio nr_pages, do the merge
● Do the merge in a kernel worker thread (deferred)

○ Because folio_put() can be called from atomic context
○ TODO: Yan’s suggestion to merge if in process context is great, does anyone know how best 

to check if code is called atomic/process context? [1]

[st_blocks] [HugeTLB support] [HugeTLB restructuring] [Optimizing restructuring]

Truncation on inode release

[1] https://lore.kernel.org/all/diqzcy7d60e2.fsf@google.com/

https://lore.kernel.org/all/diqzcy7d60e2.fsf@google.com/


● Know the original size of the folio, when folio outlives inode
● Fewer fields to save/restore during folio restructuring

○ __split_folio() doesn’t care about HugeTLB fields on the third struct page
○ Track metadata at allocation, restore on free

■ While folio is owned by guest_memfd these fields are static anyway
● Memory failure will use this to answer the question “Does this pfn belong to 

guest_memfd HugeTLB?” => handle guest_memfd HugeTLB failure separately from 
other folio types

● When offlining HugeTLB cgroups, hugetlb_cgroup_css_offline() will iterate 
h->hugepage_activelist to move HugeTLB charges (nr_pages) to parent

○ Split folio => folio_nr_pages() is less than it should be
○ => charge for full number of pages will not be moved
○ => look up this tracking to move charges, update charged cgroup

[st_blocks] [HugeTLB support] [HugeTLB restructuring] [Optimizing restructuring]

Why track allocated HugeTLB folio metadata? 



● Multi-index XArray nicely lends itself to tracking folios by order
● Has to be tracked in the kernel itself, outside of KVM, since folio can outlive 

inode (and KVM)

[st_blocks] [HugeTLB support] [HugeTLB restructuring] [Optimizing restructuring]

How to track allocated HugeTLB folio metadata? 



● Have tracking and restructuring code in mm/hugetlb_restructuring.c
○ (Name suggestions?)

● Built into the kernel, not in KVM module

[st_blocks] [HugeTLB support] [HugeTLB restructuring] [Optimizing restructuring]

Code organization



● vm_memory_attributes are supported
○ KVM_CAP_GUEST_MEMFD_FLAGS will include GUEST_MEMFD_FLAG_HUGETLB

● vm_memory_attributes = false
○ KVM_CAP_GUEST_MEMFD_FLAGS will now include GUEST_MEMFD_FLAG_HUGETLB

● INIT_SHARED and HUGETLB remain mutually exclusive

[st_blocks] [HugeTLB support] [HugeTLB restructuring] [Optimizing restructuring]

Advertising support



● Should mmap() return a PUD_SIZE aligned address for guest_memfd 
PUD_SIZE-d HugeTLB?

[st_blocks] [HugeTLB support] [HugeTLB restructuring] [Optimizing restructuring]

Issues/Questions



[Optimizing restructuring]



● Splitting to PAGE_SIZE upon sharing loses too much HVO
○ Based on usage patterns of shared pages, optimizing could save ~160MB per VM

■ => up to 40 VMs => 6GB savings
○ Some more savings from fewer DPAMT entries (TDX)

● Splitting to PMD_SIZE is faster than splitting to PAGE_SIZE
○ Numbers TBD

[st_blocks] [HugeTLB support] [HugeTLB restructuring] [Optimizing restructuring]

Why optimize restructuring?



● Upon conversion to shared, keep as many pages at PMD_SIZE
○ Split only the ones converted to shared to PAGE_SIZE

● Same for merge, merge to as large a page size as possible, based on 
shared/private status

[st_blocks] [HugeTLB support] [HugeTLB restructuring] [Optimizing restructuring]

How to optimize restructuring?



● HVO code today always removes optimization by splitting from PUD_SIZE to 
PAGE_SIZE and optimizes back directly

● Can achieve what we want (but inefficient)
○ PUD_SIZE => PAGE_SIZE => PMD_SIZE 

● Vishal has done some investigation on direct PUD_SIZE to PMD_SIZE HVO 
re-optimization

[st_blocks] [HugeTLB support] [HugeTLB restructuring] [Optimizing restructuring]

Complexities


