
VM_PFNMAP VMAs and
guest_memfd//HugeTLB
For 2025-08-07 guest_memfd bi-weekly upstream call

Contact ackerleytng@google.com if you have questions/suggestions!

mailto:ackerleytng@google.com

Idea overview

● What if we take folios from HugeTLB
● But tell core-mm to assume folio don’t exist with VM_PFNMAP?

About VM_PFNMAP

● “Page-ranges managed without "struct page", just pure PFN”
○ Virtual memory subsystem should not go looking for a struct page [1]

● Even in cases where that structure does exist (such as remappings of real
memory), the VM code will pretend that it does not. [1]

[1] https://lwn.net/Articles/162860/

https://lwn.net/Articles/162860/

How it would work

● mmap handler
○ Set VM_PFNMAP for VMA for the entire VMA range that requests guest_memfd

● Fault handler
○ Fill in process page tables directly (i.e. call vmf_insert_pfn())
○ Return VM_FAULT_NOPAGE

● Stage 2 page table fault handler kvm_gmem_get_pfn()
○ Compute mapping level based on shareability and return that
○ No page splitting

● Memory can remain mmap()-ed like now

Shared to private conversion

● Unmap from process page tables
● Unmap from stage 2 page tables
● No folio merging

With VM_PFNMAP, no more folio restructuring

● No restructuring (split/merge) on conversions
● No more conversion refcounting issues

○ David: Transient refcounting still exists
○ Sean: Will be re-creating refcounting issue if we want to support nested virtualization

● Folios no longer outlive guest_memfd (core-mm assumes no folios)
○ Cleanup can be done on inode release

■ No need to merge folios after guest_memfd closes
■ No guest_memfd page type flag applied temporarily

● No restructuring to race with in memory failure handling
○ (may still need custom handling)

● No more runtime vmemmap restore and optimize
○ No need to reserve memory for overheads when restoring vmemmap optimization

● Runtime restructuring cost goes away

Did not discuss the slides after this one

GUP and IO

● IO is already being offloaded and handled via VFIO
● vfio_dma_do_map() can already map VM_PFNMAP memory

○ (iommufd_ioas_map() cannot)
● Interoperability: guest_memfd needs a way to force unmapping from IOMMU

to ensure devices don’t write to private memory

Limitation: Cannot GUP from VM_PFNMAP VMAs

● GUP use cases?
● What are some GUP use cases that cannot be replaced by other

mechanisms?
● Can we re-frame the folio restructuring problem as a

guest_memfd-with-VM_PFNMAP-interoperability problem and focus on
enlightening other users of guest_memfd?

Longer term benefits

● Brings guest_memfd closer to being a “primary” mmu [1] since it also now
manages process page tables

○ Can handle mapping in userspace page tables, even at 1G, without taking dependency on
“making HugeTLB less weird” in core-mm

● Easier to move away from struct folios in future

[1] Sean: https://lore.kernel.org/all/aIP-qSnH1jjuykmP@google.com/

https://lore.kernel.org/all/aIP-qSnH1jjuykmP@google.com/

Thank you!

Possible Data Corruption in VFIO?

Mapped in
process page

tables

Memory

Mapped in
IOMMU

In
VM_PFNMAP

VMA

IIUC this mapping
takes no pins?

https://github.com/torvalds/linux/blob/35a813e010b99894bb4706c56c16a580bf7959c2/drivers/vfio/vfio_iommu_type1.c#L1469
https://github.com/torvalds/linux/blob/35a813e010b99894bb4706c56c16a580bf7959c2/drivers/vfio/vfio_iommu_type1.c#L622
https://github.com/torvalds/linux/blob/35a813e010b99894bb4706c56c16a580bf7959c2/drivers/vfio/vfio_iommu_type1.c#L564

Mapped in
process page

tables

Memory

Mapped in
IOMMU

In
VM_PFNMAP

VMA

Unmap

Used
somewhere

else?

Memory

Mapped in
IOMMU

Used
somewhere

else?

Memory

Mapped in
IOMMU

Unexpected
writes/corruption
for other user?

Smallest changes tested to work

I could boot a VM with Fuad's kvmtool instructions

● Add this in guest_memfd's mmap handler

 vm_flags_set(vma, VM_PFNMAP);

● Change this in guest_memfd's fault handler

 // vmf->page = folio_file_page(folio, vmf->pgoff);
 vmf_insert_pfn(vmf->vma, vmf->address, folio_file_pfn(folio, vmf->pgoff));
 ret = VM_FAULT_NOPAGE;

