Minimum Support
for Memory Failure Handling
to land guest._ memfd//HugeTLB

For 2025-07-24 guest_memfd bi-weekly upstream call

Contact ackerleytng@google.com if you have questions/suggestions!

mailto:ackerleytng@google.com

Overview

e Lasttime: proposed memory_failure() handling for guest_ memfd
e Motivation: need to address inconsistencies that current
memory_failure() handling will create once guest_ memfd gains HugeTLB

support

Goal for today

e Seek community alignment on minimal memory handling for guest_ memfd
HugeTLB support to land in the kernel

o Let us use HugeTLB before full memory failure handling support is complete
o Hope to address the inconsistencies and at least have defined behavior on memory failure

What does minimum support look like?

When memory failure is detected for a given PFN that belongs to guest_memfd,

Track memory failure in global data structure
Then, if
o Memory was unconsumed, but failure detected
m Let all processes continue to run, defer until failed memory is consumed

o Failed memory was consumed
m Send SIGBUS to current

When freeing folio on inode release, indicate any memory failures to HugeTLB using folio’s
HWpoison flag

Don’t unmap failed memory

Only mark HWpoison on folios when releasing folios from guest memfd
On faults, don’t check for memory failure

Don’t handle PR_MCE_KILL_EARLY

Risk: keeping failed memory mapped

° Give up on a chance to contain memory failures to one VMM/guest

o Subsequent accesses (in certain cases) may take down host
o Raised by Dan last week
° Can we accept this denial of service risk since
o Memory failure is in itself not common, hence exploitation will be hard
[] No #MCE virtualization - reliable exploitation is harder without knowledge of memory failure
° Sean: Unacceptable risk
o To prevent guest from continuously accessing, there’s some unmapping that happens

° Dan: Unmap on error is non-negotiable
° Sean: Kill the guest completely and unmap everything is possible
° James: Make guest_memfd completely unusable is a good idea

o Unconsumed error: can defer, can handle it too. This is rare.
[] Dan: guest: has to trust. Best effort for unconsumed
o Dan: first cut, Sean: stick approach
o HugeTLB: handling consumed memory error is best-effort. If in the middle of migrating a page, then kind of ignore it. But migration is a transient thing for HugeTLB, here

we’re talking about long term usage.

° David: In QEMU, people are used to complete VM dying

° Unmapping complicates handling
o guest_memfd does runtime folio restructuring, unmapping at the right granularity requires locking
) Unmapping will break CoCo VMs since we can’t pair unmapping with #MCE virtualization

C

id not discuss the slides after this one

Risk: folios with failed memory not marked HWpoison

e There may be kernel users relying on HWpoison flag (while folios are allocated and
owned by guest_memfd) that may access failed memory and take down host?

e Clarifying this concern

o Was the concern about folios that guest_ memfd already owns and have been given to the VM to use?
o What are the kernel users that may access a folio already allocated and owned by guest memfd, that
rely on this flag to gate access to failed memory?

e Can we accept this denial of service risk?

e Marking HWpoison complicates folio restructuring
o guest_memfd does runtime folio restructuring, marking HWpoison requires tracking and taking locks

Limitation: SIGBUS-ing current for consumed failure

e current may not always be the VM

e Can we accept this limitation?
o QEMU uses PR_MCE_KILL_EARLY only for the main thread to log the error, the vCPU threads use
PR_MCE_KILL_LATE.
o current is most likely the VMM for consumed memory failures on private memory

o For consumed memory failures on shared memory, current will probably be VMM related and can
coordinate with the VMM to handle SIGBUS.

e There is existing support for finding the owner process of a failed PFN, but only for
shared folios
o Shared/private status is dynamic and it's awkward to have partial support
e For private folios, guest_ memfd tracks the owning struct kvm, but no support for
finding the VMM process for a given struct kvm

https://github.com/qemu/qemu/blob/9e601684dc24a521bb1d23215a63e5c6e79ea0bb/util/oslib-posix.c#L353

Limitation: No handling for PR_MCE_KILL_EARLY

e Evenif PR_MCE_KILL_EARLY is set, the requesting thread will not be notified

e For now, no way to find owning process of private memory
o SIGBUS-ing current only fulfills the purpose of PR_MCE_KILL_EARLY if current is the
VMM thread that wants to get notified of unconsumed (but detected) memory failures
m But for unconsumed memory failures, current can be any process and is probably not
the userspace VMM

e Can support PR_LMCE_KILL_EARLY together with proper support for
SIGBUS-ing owner of private memory

Future work

e Unmap only subfolios that have failed memory
o Allow opt-in to unmapping from userspace using guest_ memfd flag
e Indicate HWpoison on folios: sort out locking to either

o Support marking HWpoison on guest_memfd folios
o Oronly mark HWpoison for shared folios? When private memory doesn’t have folios?
o Will have to allow faulting in spite of HWpoison flag with some opt-in mechanism

e Build mechanism for sending signal (like SIGBUS) to processes associated

with a struct kvm

o Probably have a new kvm request type and use kvm_make_all_cpus_request()
o Can then support PR_MCE_KILL_EARLY

