
Minimum Support 
for Memory Failure Handling 

to land guest_memfd//HugeTLB
For 2025-07-24 guest_memfd bi-weekly upstream call

Contact ackerleytng@google.com if you have questions/suggestions!

mailto:ackerleytng@google.com


Overview

● Last time: proposed memory_failure() handling for guest_memfd
● Motivation: need to address inconsistencies that current 

memory_failure() handling will create once guest_memfd gains HugeTLB 
support



Goal for today

● Seek community alignment on minimal memory handling for guest_memfd 
HugeTLB support to land in the kernel

○ Let us use HugeTLB before full memory failure handling support is complete
○ Hope to address the inconsistencies and at least have defined behavior on memory failure



What does minimum support look like?

When memory failure is detected for a given PFN that belongs to guest_memfd,

● Track memory failure in global data structure
● Then, if

○ Memory was unconsumed, but failure detected
■ Let all processes continue to run, defer until failed memory is consumed

○ Failed memory was consumed
■ Send SIGBUS to current

● When freeing folio on inode release, indicate any memory failures to HugeTLB using folio’s 
HWpoison flag

● Don’t unmap failed memory
● Only mark HWpoison on folios when releasing folios from guest_memfd
● On faults, don’t check for memory failure
● Don’t handle PR_MCE_KILL_EARLY



Risk: keeping failed memory mapped
● Give up on a chance to contain memory failures to one VMM/guest

○ Subsequent accesses (in certain cases) may take down host
○ Raised by Dan last week

● Can we accept this denial of service risk since
○ Memory failure is in itself not common, hence exploitation will be hard

■ No #MCE virtualization - reliable exploitation is harder without knowledge of memory failure
● Sean: Unacceptable risk

○ To prevent guest from continuously accessing, there’s some unmapping that happens
● Dan: Unmap on error is non-negotiable
● Sean: Kill the guest completely and unmap everything is possible
● James: Make guest_memfd completely unusable is a good idea

○ Unconsumed error: can defer, can handle it too. This is rare.
■ Dan: guest: has to trust. Best effort for unconsumed

○ Dan: first cut, Sean: stick approach
○ HugeTLB: handling consumed memory error is best-effort. If in the middle of migrating a page, then kind of ignore it. But migration is a transient thing for HugeTLB, here 

we’re talking about long term usage.
● David: In QEMU, people are used to complete VM dying

● Unmapping complicates handling
○ guest_memfd does runtime folio restructuring, unmapping at the right granularity requires locking 

● Unmapping will break CoCo VMs since we can’t pair unmapping with #MCE virtualization



Did not discuss the slides after this one



Risk: folios with failed memory not marked HWpoison

● There may be kernel users relying on HWpoison flag (while folios are allocated and 
owned by guest_memfd) that may access failed memory and take down host?

● Clarifying this concern
○ Was the concern about folios that guest_memfd already owns and have been given to the VM to use?
○ What are the kernel users that may access a folio already allocated and owned by guest_memfd, that 

rely on this flag to gate access to failed memory?
● Can we accept this denial of service risk?

● Marking HWpoison complicates folio restructuring
○ guest_memfd does runtime folio restructuring, marking HWpoison requires tracking and taking locks



● current may not always be the VM
● Can we accept this limitation?

○ QEMU uses PR_MCE_KILL_EARLY only for the main thread to log the error, the vCPU threads use 
PR_MCE_KILL_LATE.

○ current is most likely the VMM for consumed memory failures on private memory
○ For consumed memory failures on shared memory, current will probably be VMM related and can 

coordinate with the VMM to handle SIGBUS.

● There is existing support for finding the owner process of a failed PFN, but only for 
shared folios

○ Shared/private status is dynamic and it’s awkward to have partial support
● For private folios, guest_memfd tracks the owning struct kvm, but no support for 

finding the VMM process for a given struct kvm 

Limitation: SIGBUS-ing current for consumed failure

https://github.com/qemu/qemu/blob/9e601684dc24a521bb1d23215a63e5c6e79ea0bb/util/oslib-posix.c#L353


Limitation: No handling for PR_MCE_KILL_EARLY

● Even if PR_MCE_KILL_EARLY is set, the requesting thread will not be notified
● For now, no way to find owning process of private memory

○ SIGBUS-ing current only fulfills the purpose of PR_MCE_KILL_EARLY if current is the 
VMM thread that wants to get notified of unconsumed (but detected) memory failures

■ But for unconsumed memory failures, current can be any process and is probably not 
the userspace VMM

● Can support PR_MCE_KILL_EARLY together with proper support for 
SIGBUS-ing owner of private memory



Future work

● Unmap only subfolios that have failed memory
○ Allow opt-in to unmapping from userspace using guest_memfd flag

● Indicate HWpoison on folios: sort out locking to either
○ Support marking HWpoison on guest_memfd folios
○ Or only mark HWpoison for shared folios? When private memory doesn’t have folios?
○ Will have to allow faulting in spite of HWpoison flag with some opt-in mechanism

● Build mechanism for sending signal (like SIGBUS) to processes associated 
with a struct kvm

○ Probably have a new kvm request type and use kvm_make_all_cpus_request()
○ Can then support PR_MCE_KILL_EARLY


