Memory Failure Handling for guest_memfd+HugeTLB

For 2025-07-17 guest_memfd bi-weekly upstream call

Contact ackerleytng@google.com if you have questions/suggestions!

How is it handled for 4K pages (pre-HugeTLB support)?

- Starting point in the kernel is the #MCE handler, leading up to memory_failure()
- memory_failure() marks folios with HWpoison
- Without mmap support in guest_memfd, 4K pages are only used for private pages ("not mapped" from host perspective)
 - memory_failure() hands the folio to kvm_gmem_error_folio(), which will unmap the pages from stage-2 page tables
 - On the next private fault, __kvm_gmem_get_pfn() checks for HWpoison and returns
 -EHWPOISON, which goes all the way to userspace.

How is it handled for 4K pages (post-mmap support)?

- Same if 4K pages are used for private pages
- If 4K pages are used as shared pages,
 - If pages are mapped, the userspace VMM will be killed with SIGKILL
 - SIGKILL will probably lead to freeing of the folio on guest_memfd inode release, so folio will be freed with HWpoison flag
 - memory_failure() continues to kvm_gmem_error_folio(), which will unmap the pages from stage-2 page tables, which will unmap shared pages too, for a non-CoCo VM.
 - David: Only get a SIGKILL if try to unmap, but failed to unmap, so it's okay, aligned with everything else (should double-check)
 - Ackerley (after meeting): My bad. If pages are mapped
 - But not faulted in, collect_procs() won't pick it up so no signal will be sent to those processes
 - And faulted in, collect_procs() will pick up the process, but in kill_procs(), SIGKILL is only if for folios not faulted in (not even on the process list). SIGBUS will be sent for processes on the list
 - So for all shared and private pages, mapped or not, userspace VMM will get a SIGBUS
 - If faulted, the SIGBUS will be from memory_failure()
 - If not faulted, the SIGBUS will be from __do_fault() (later)
 - If 4K pages are not mapped, no SIGKILL.
 - Continue to kvm_gmem_error_folio(), which will unmap the pages from stage-2 page tables
 - On next fault (if there is a fault), __do_fault() (outside of guest_memfd) will discover HWpoison and SIGBUS the userspace VMM

Why handle specially for gmem+HugeTLB?

- HugeTLB support implies conversion support
- Conversion support implies runtime folio restructuring (split/merge)
- Memory failure can happen at any time during guest_memfd lifetime
 - Race-related inconsistencies when marking folios poisoned
 - E.g. if PGTY_hugetlb is removed but folio is not yet split, memory_failure() would think it's a THP page when it is not

Requirements

- 1. Guest(s) should continue to run for as long as possible
- 2. Userspace VMM must know exactly which PFN failed
- 3. Don't let memory failure handling slow down regular operations (like conversion)

Proposal

- 1. In memory_failure(), identify guest_memfd folios, handle them separately from any other type of folio.
- 2. Handle memory failure:
 - a. If bad memory was detected but not yet consumed, do nothing, defer all handling till consumption
 - b. If memory_failure() is entered because bad memory was consumed, SIGBUS userspace VMM
 - c. Dan: detected but not consumed => unrecoverable, should handle
 - i. Vishal: implement in future
 - ii. David: mm alignment session: memory failure handling for HugeTLB
 - 1. Record error on page, keep it mapped, inject/virtualize MCE
 - 2. Opt-in system to different memory failure policies
 - d. Jiaqi: userspace memory failure is mostly about unmap or not. Want to SIGBUS
 - i. To kill early, KVM needs new mechanism to look up relevant process
 - e. Callout: No unmapping in kvm_gmem_error_folio()

Discussion parts

- 1. How to identify a guest_memfd folio
- 2. guest_memfd memory failure handling

[Handling] Why SIGBUS?

- SIGBUS, unlike SIGKILL, can be handled (can install signal handler)
 - Memory error matches definition of SIGBUS
- Using a signal allows reporting precisely the (virtual address of the) PFN of bad memory
 - If VM supports #MCE injection, userspace VMM can virtualize memory failure
- Signal vs KVM exit: handle without unmapping the page

[Handling] Why not unmap?

- Handling when bad-memory-not-yet-consumed: don't unmap to allow guest to continue using memory until the specific part of the page with bad memory is consumed
 - Big difference if the folio is a HugeTLB folio, smaller difference for split folios
- Handling on consumption: No point unmapping
 - Successful #MCE virtualization (non-CoCo and SNP VMs): guest will avoid bad memory anyway
 - Cannot virtualize #MCE: (e.g. TDX)
 - Bad private memory: TD is already torn down
 - Bad shared memory: Replacing memory won't replace contents, so TD won't function anyway.

[Identification] How to identify a guest_memfd PFN?

- page type
 - Can't use this when mapcount > 0
- folio->mapping
 - May race with truncation
- Global data structure containing all guest_memfd PFNs

Tracking of failed PFNs when returning to HugeTLB?

- Defer till next #MCE (aka don't track)
 - Less work
 - IIUC HugeTLB doesn't dissolve poisoned folios when freeing (only on demotion), so deferring gives system a chance to dissolve poisoned folios at next #MCE
- Track and return folio with HWpoison to HugeTLB on freeing from guest_memfd
 - HugeTLB folio may float around with HWpoison, entire folio can't be used until demotion
- David: Set when returning to HugeTLB, let HugeTLB improve on that

How to track failed PFNs?

- Global set of failed PFNs
 - Doesn't complicate folio restructuring
- Use HWpoison flag in folio
 - Need different processes for HugeTLB vs split folios
 - Need to lock out restructuring
- Vishal: For lifetime of guest_memfd, still keep handing out errored folios (but not poisoned)
- David: mark hwpoison, summarize hwpoison and merge
 - But can't fault in hwpoisoned folio
- Jiaqi: hwpoison, but tell core-mm/kvm to continue faulting it in
 - David: Address space flag
- Dan: what if guest doesn't respect injected MCE, takes down all other guests e.g. MCE on VMENTER (or other instructions that make it unrecoverable)
 - Jiaqi: let userspace VMM defend this case, VMM can request unmapping (as a policy). VMM can decide based on VM type.
 - Leave various options
- David: HWpoison is used by other subsystems to guard really bad errors. Should keep it set on the folio.