
Following up on discussion last time regarding kvm_mem_is_private() usage/handling in KVM vs guest_memfd's
new features

● Go over how we introduce userspace-visible changes to ensure that use cases will be taken care of
● 4 use cases I can think of, any others?

a. Backward compatibility for Coco VMs that will use guest_memfd only for private memory and other backing memory for shared memory
b. Non-coco VMs that will use guest_memfd, will require mmap to userspace

■ guest_memfd should optionally allow removal of memory from kernel direct map
c. pKVM
d. Coco VMs that will use guest_memfd for both shared and private memory

New features stage 1: guest_memfd gains mmap() support
● V8 https://lore.kernel.org/all/20250430165655.605595-1-tabba@google.com/ was posted yesterday. The following points describe the desired state, not v8.
● New guest_memfd flag: GUESTMEM_FLAG_SUPPORT_SHARED

○ With this flag, guest_memfd can now be mmap-ed to userspace
○ On binding of guest_memfd to a memslot, validate that the VM type is not some Coco VM if GUEST_MEMFD_FLAG_SUPPORT_SHARED is set.
○ For a memslot configured with a guest_memfd that has GUEST_MEMFD_FLAG_SUPPORT_SHARED set, KVM will use kvm_gmem_get_pfn() for both shared and private guest faults

■ For accesses like instruction emulation, KVM will still use userspace_addr to read guest memory.
■ On binding, also validate that userspace_addr refers to the same folio as fd+offset

● Validate only if userspace_addr is not NULL, so that userspace has the option to disallow any use of userspace_addr for accessing memory (e.g. to disallow instruction emulation)
■ guest_memfd only allows MAP_SHARED, so no need to validate mapping type on binding

● New KVM cap to indicate that guest_memfd can now support mmap: CONFIG_KVM_GMEM_SHARED_MEM
● Usage

○ Coco VMs can continue to use guest_memfd only for private memory. These VMs will not set GUEST_MEMFD_FLAG_SUPPORT_SHARED, so mmap will not be enabled for these VMs
○ Non-coco VMs can now use guest_memfd by setting GUEST_MEMFD_FLAG_SUPPORT_SHARED - mmap will be enabled
○ pKVM: cannot use this stage yet? Since there's still nothing to prevent kvm_gmem_fault() from returning a guest-owned page

New features stage 2: guest_memfd gains conversion support
● New KVM CAP to indicate conversion support
● If GUEST_MEMFD_FLAG_SUPPORT_SHARED is set,

○ All of the new features from stage 1, except that now Coco VMs can bind even if GUEST_MEMFD_FLAG_SUPPORT_SHARED is set
○ guest_memfd will initialize the shareability xarray and will default to initialization as SHARED.
○ guest_memfd will perform conversions (updating of the shareability xarray, merge/split of page when 1G support is added)
○ kvm_gmem_fault() will return a page if shareability == ALL, SIGBUS otherwise.
○ kvm_mem_is_private() will query guest_memfd for private/shared status (aka shareability)

■ Any mismatch between fault->is_private and shareability will result in KVM_EXIT_MEMORY_FAULT
○ kvm_gmem_get_pfn() will not validate shareability state against fault->is_private

■ By the time kvm_gmem_get_pfn() is called, the fault type is already determined to match with guest_memfd’s shareability status.
■ Page preparation will be handled based on shareability status

https://lore.kernel.org/all/20250430165655.605595-1-tabba@google.com/

○ When truncating, guest_memfd will request invalidation of both private and shared mappings, since guest_memfd can no longer rely on unmapping from userspace to trigger invalidation of shared
mappings via mmu notifiers

■ Truncation will call unmap, which will trigger invalidation of shared mappings again, but that should be a small performance penalty since the second unmap will not cause a TLB flush for
guests.

■ suggested to remove mmu notifiers for guest_memfd folios - that can be an optimization? David Hildenbrand
■ said that leaving mmu notifiers could be a feature instead of a bug - there may be different mappings for the same folios, or unmapping may not go through guest_memfd Sean Christopherson
■ also suggested that perhaps a guest_memfd specific, second HVA field could be added, which would take the place of userspace_addr for guest_memfd. Sean Christopherson

● guest_memfd gains new ioctls, CONVERT_SHARED and CONVERT_PRIVATE, enabled if GUEST_MEMFD_FLAG_SUPPORT_SHARED is set
● New guest_memfd flag, GUEST_MEMFD_FLAG_INIT_PRIVATE

○ Shareability defaults to ALL (shared with host), which aligns with the default for kvm->mem_attr_array
○ Set this flag to initialize guest_memfd with shareability set to GUEST

● Usage
○ Coco VMs can continue to use guest_memfd only for private memory, these VMs will not set GUEST_MEMFD_FLAG_SUPPORT_SHARED, so mmap will not be enabled for these VMs

■ Coco VMs wanting to use guest_memfd only for private memory can also set both GUEST_MEMFD_FLAG_SUPPORT_SHARED and GUEST_MEMFD_FLAG_INIT_PRIVATE.
● In this case, any calls to conversion ioctl will still be handled. It is the fault of the userspace VMM.
● It does not reopen the hole guest_memfd was meant to patch since host faults are guarded by a shareability check.

○ Non-coco VMs can use guest_memfd by setting GUEST_MEMFD_FLAG_SUPPORT_SHARED. Shareability is initialized by default to shared, so no change required here.
■ Any calls to the conversion ioctls will be handled and is the fault of userspace. No additional checks here.

○ pKVM will specify GUEST_MEMFD_FLAG_SUPPORT_SHARED and call guest_memfd conversion functions without exiting to userspace.
○ Coco VMs that use guest_memfd for both shared and private memory will specify GUEST_MEMFD_FLAG_SUPPORT_SHARED and optionally GUEST_MEMFD_FLAG_INIT_PRIVATE, and will use the

conversion ioctls to convert memory.

Discussion slides are at: https://lpc.events/event/18/contributions/1764/attachments/1409/3708/2025-05-01-kvm-memory-attributes-vs-guest_memfd-shareability.pdf

mailto:david@redhat.com
mailto:seanjc@google.com
mailto:seanjc@google.com
https://lpc.events/event/18/contributions/1764/attachments/1409/3708/2025-05-01-kvm-memory-attributes-vs-guest_memfd-shareability.pdf

	Following up on discussion last time regarding kvm_mem_is_private() usage/handling in KVM vs guest_memfd's new features
	New features stage 1: guest_memfd gains mmap() support
	New features stage 2: guest_memfd gains conversion support

