
KVM memory attributes vs 
guest_memfd shareability

updates and questions
ackerleytng, 2025-05-01

guest_memfd upstream call



Background

● Fuad has been working on supporting conversions to share the same physical 
memory [1] [2]

● This will solve the double allocation problem

[1] https://lore.kernel.org/all/20250318161823.4005529-1-tabba@google.com/T/
[2] https://lore.kernel.org/all/20250328153133.3504118-1-tabba@google.com/T/ 

https://lore.kernel.org/all/20250318161823.4005529-1-tabba@google.com/T/
https://lore.kernel.org/all/20250328153133.3504118-1-tabba@google.com/T/


Current state

● Track shareability in guest_memfd inode, determines whether a page 
○ Can be faulted to a userspace page table or
○ If the page belongs to the guest

● kvm->mem_attr_array also tracks whether the page is private or shared
● pKVM will not be using kvm->mem_attr_array
● Confidential VMs convey the private/shared access type during fault handling

○ Don’t need to store private/shared status in two places



guest_memfd conversion ioctl?

● Previous RFC [1]: userspace informs KVM of conversion using 
KVM_SET_MEMORY_ATTRIBUTES

○ Iterate memslots in range, convert range for each inode in memslot
● New proposal: a guest_memfd (not KVM but directly to guest_memfd) ioctl for 

conversion, which takes params: offset, size

[1] https://lore.kernel.org/all/cover.1726009989.git.ackerleytng@google.com/ 

https://lore.kernel.org/all/cover.1726009989.git.ackerleytng@google.com/


Advantages
over using 

KVM_SET_MEMORY_ATTRIB
UTES ioctl



Advantage 1: Aligned with other memory providers

● Other memory providers use mmu_notifiers when unmapping happens and 
KVM gets informed

○ Action originates from memory and KVM is notified
● With guest_memfd conversion ioctl, guest_memfd will notify KVM from 

conversion ioctl



Advantage 2: Can convert independently of memslots

● Converting via the KVM_SET_MEMORY_ATTRIBUTES ioctl assumes 
guest_memfd is bound using memslots

● At VM reboot, guest_memfd is disassociated from memslots, and memory 
needs to be restored to allow private faults

● Having a direct guest_memfd ioctl avoids having to first bind memslots
● Sean’s comment from guest_memfd call 2025-05-01:

○ VM reboot is not a strong advantage. Rather, conversion is about setting memory attributes, 
setting the attributes directly with an ioctl makes sense, instead of setting memory attributes 
via KVM.



Advantage 3: Remove duplicate state tracking

● Can avoid duplicate shared/private state tracking in kvm->mem_attr_array and guest_memfd’s 
shareability

● When guest_memfd is used for both shared and private memory and guest_memfd tracks 
shareability, then there won’t be a need to have the same information tracked again in 
kvm->mem_attr_array.

● Discussion from guest_memfd call 2025-05-01:
○ Sean: If the memslot is destroyed, conversion happens, then re-attached to VM, then VM didn’t know the transition 

happened?
■ Destroying memslot invalidates memory, fault goes via guest_memfd anyway so VM would know later

○ Sean: VM’s memslot’s lpage_info needs to be updated with conversion?
■ lpage_info helps determine mapping level

● max_order is returned from guest_memfd, which contributes to determining mapping level
○ Michael Roth: For SNP, if we have a hugepage, not split, RMP table is still split

■ guest_memfd returns a smaller order, RMP table can get updated
■ guest_memfd owns the RMP table, need arch-specific hooks to set up

○ James Houghton: two VMs use the same inode, same guest_memfd
■ Invalidation iterates and invalidates in all the VMs
■ VMs query the same (single) guest_memfd state



Advantage 4: Avoid complex error handling in kernel

● In case of conversion failures (e.g. failing to split/merge a page due to 
memory pressure) we want to restore pre-conversion shareability state

● Using KVM_SET_MEMORY_ATTRIBUTES requires iterating memslots and 
applying conversions per-inode

○ A failure after the first memslot would require restoring state
○ This complex error handling can be handled in userspace with a direct guest_memfd 

conversion ioctl



Addressing 
gaps

After ignoring mem_attr_array



No deprecation of shared/private in mem_attr_array

● Tracking shared/private page state in kvm->mem_attr_array must be 
retained for VMs that use guest_memfd only for private memory



Other uses of kvm->mem_attr_array

● Letting userspace handle implicit conversions
○ When there is a mismatch between memory attribute vs fault type (shared/private), exit to 

userspace
■ Instead of checking memory attributes, for a guest_memfd that supports conversions, 

query guest_memfd for memory status
● Determining mapping level for a page

○ Query guest_memfd instead
● Determining fault path (slot->userspace_addr vs 

kvm_gmem_get_pfn()) for KVM_X86_SW_PROTECTED_VM
○ No change, continue to use KVM_SET_MEMORY_ATTRIBUTES ioctl


