
guest_memfd in-place sharing 
and 1G page support

updates and questions

ackerleytng, 2025-04-03



Update

● Using HugeTLB to provide 1G page support in guest_memfd
● Building off Fuad’s two series [1] [2]
● Still working out refcounting and locking issues

[1] https://lore.kernel.org/all/20250318161823.4005529-1-tabba@google.com/T/
[2] https://lore.kernel.org/all/20250328153133.3504118-1-tabba@google.com/T/ 



Q: Transient refcounts on guest_memfd pages

Is it okay for guest_memfd to fail conversion if there are elevated refcounts?



Q: Transient refcounts on guest_memfd pages

Current proposal in Fuad’s series v7 [1] and how folio_put() callback is used

● If refcount == safe refcount
○ Set folio (technically offset) to KVM_GMEM_GUEST_SHARED

● Else
○ Disallow faulting by setting folio to KVM_GMEM_NONE_SHARED
○ Setup folio_put() callback

■ folio_put() callback is guest_memfd’s notifier that there are no more users, then we can 
set folio to KVM_GMEM_GUEST_SHARED

● If guest tries to fault memory in KVM_GMEM_NONE_SHARED state vcpu_run() 
returns -EBUSY, userspace retries

[1] https://lore.kernel.org/all/20250328153133.3504118-1-tabba@google.com/T/ 



Q: Transient refcounts on guest_memfd pages

Alternative proposal for conversion

● If refcount == safe refcount
○ Set folio (technically offset) to KVM_GMEM_GUEST_SHARED

● Else
○ Return -EAGAIN (“Resource temporarily unavailable”) to guest_memfd’s caller
○ For X86, -EGAIN will go out to userspace, userspace can try again, and the possible reasons 

for getting this error are that
■ Userspace VMM forgot to unpin one of the pages
■ There’s a transient refcount on one of the pages in the requested conversion range 

(which should not happen often) and userspace should retry



Q: Transient refcounts on guest_memfd pages

Why?

● More transparent errors
○ Userspace, guest, or someone must retry while the page conversion 

hasn’t completed
○ Deferring the retry till when guest tries to fault in the page and sees 

KVM_GMEM_NONE_SHARED is less obvious than an error during conversion
● Removes the need for third KVM_GMEM_NONE_SHARED state
● Removes(?) the need for folio_put() callback
● DavidH: returning error is an interface that is more reversible (can reduce 

errors later). The opposite interface is harder to change.
● DavidH: can perhaps skip speculative refcounts for guest_memfd folios in 

future



Thanks :)



Q2: guestmem (the library) interface to split and merge?

Context

● Splitting and merging folios takes significant amounts of time
○ Want to be able to control when it happens, as opposed to leaving it up to when the last refcount is dropped (more 

uncertainty and possible random latencies)
● Splitting is a requirement

○ For per-page pincount and refcount tracking
○ Because core-mm doesn’t support 1G page mappings outside of HugeTLB (yet)

● Merging when converting to private is an optimization
○ Might be worth avoiding the merge if guests keep converting back and forth

● Userspace can apply heuristics on
○ When to merge, what size to merge to - 2M or 1G, and what size to split to, etc
○ James Houghton: Why not merge only at the end?
○ Michael Roth: SNP cannot merge pages unless guests request it. If we’re optimizing there, why not optimize splitting?

■ Vishal: Will still save memory from HVO
○ DavidH: Maybe an guest_memfd ioctl to merge?

■ HugeTLB: Buddy split patch series
○ DavidH: focus on using folio_put() callback to merge only at truncate
○ DavidH: What to do on reboot? Request merge on reboot?


