Google
Guest Memfd: Hugepage Support

vannapurve@

Guest_memfd: Huge Page Folio Support

e Faultable ranges are backed by split folios.

e It should be safe to merge the page back when complete hugepage range
becomes unfaultable or is truncated.

e Guest_memfd needs to return folios to the allocator as they were allocated.

Google

o & N
Initial state unfaultable-unallocated |

1) truncate should be allowed when file offsets are allocated
2) faulting is allowed on unallocated/allocated states only
Question: 1) after truncate, is it desirable to transition the offsets to previous faultable/unfaultable states?

on fault -
allocate huge folio

[J
L J
Initial state @ con\ynemow Conversion

| faultable-unallocatedw (

| unfaultable-allocatedw

[| [
g J A

On fault -
1) allocate huge folio
2) split the folio
3)iget(inode)

- Memory Conversion
| faultable-allocated |

Memory Conversion -
1) Split the folio
2)iget(inode)

folio_put callback
for last remaining folio in hugepage
1) Merge the folio

2) iput(inode)

.)

truncate

truncate pendingw

1) Drop the refcounts \] ufapending\

N S

truncate

Y

[

S

Gce

J
J

folio_put callback

for last remaining folio in hugepage

1) Merge the folio
2) truncate folio
2) iput(inode)

—_—
truncate ready

Issue: Does it make sense to introduce fapending?

e Deferring split of the folio till shared faults happen, can cause guest_memfd
users to wrongly think that the folio can still be mapped at larger size.
e Better would be to implement eager split during memory conversion.

Google

Issue: Restoring folios before vs after inode cleanup

e Keeping inode alive till all folios are returned to their unsplit state is problematic.
o Inode truncate will not get triggered unless userspace explicitly does so.

e Option: Introduce an allocator wrapper which can stick around till all the folios

are restored.
o Can be implemented as part of mm/guest_memfd library.
o Should handle folio_put callback and relay it to guest_memfd if needed.

Google

Initial state

%
unfaultable-unallocated | 1) trunFatg should be allowed when file offsets are allocated

l 2) faulting is allowed on unallocated/allocated states only
4 3) Memory conversion should be allowed on unallocated/allocated states only

[

on fault -

Initial state Memory Conversion Memory conversion :
allocate huge folio

Allocator wrapper logic -

p « - if folio is NOT owned by wrapper and inode is alive
faultable-unallocated | unfaultable-allocated L—»— notify inode about folio put callback

(I 7 |] guest_memfd logic -

- / J

on notification from wrapper
for last folio in hugepage, merge the folio

On fault -
1) allocate huge folio
2) split the folio -
3) Increment wrapper refcount

Memory Conversion

1) Spiit the folio folio_put callback

for last remaining folio in hugepage
1) Merge the folio
2) Drop wrapper refcount

iz e file offset info in the folio

™ TSI,
| faultable-allocated 3) Drop the refcounts | ufapending _ncaie
| ; 1) Release the folio ownership to allocator wrapper
\) 2) Drop the refcounts

truncate -
1) Release the folio ownership to allocator wrapper
2) Drop the refcounts

truncate

folio_put callback

for last remaining folio in hugepage -
1) Merge the folio Allocator wrapper logic-
) 2) truncate folio if folio is NOT owned by wrapper and inode is alive

(truncate pending\| 3) Drop wrapper refcount \J/truncate ready | | . nqtlfy mode sbouk fia, pit cllback

l i ’T—F__A if folio is owpefi ‘

. 4 . J for last folio in hugepage, merge the folio and release

guest_memfd logic-
on notification from wrapper, release the folio to wrapper

Guest_memfd Usecases

Google

Initial faultable unallocated -
o Non-CoCo VMs, SNP VMs

Initial unfaultable unallocated -
o TDXVMs

Faultable allocated -> truncate pending
o Memory ballooning with non-coco VMs

Unfaultable allocated -> truncate ready
o Inode cleanup

Truncate ready -> faultable unallocated
o Memory ballooning

Truncate ready -> unfaultable unallocated
o Noreal usecase yet

Google

| core-mm ‘ ‘ base allocator J ‘wrapper ‘

guest_memfd

Initialization /) |

CreateWrapperInstance(inode)

1) Create wrapper object
2) associate supplied inode with the wrapper object

Cleanup) ‘

ReleaseWrapperInstance(handle, inode)

1) Disassociate inode from the wrapper instance
2) Drop the refcount on wrapper instance

N
|

Runtime J

TransferFolioOwnership(handle, folio)

| Used by gmem

. |
in case of truncate operation Iﬁ i
|

EnableFolioPutCallback(handle, folio)

| Used by gmem in case of shared -> private callback b]

<

GetWrapperRef(handle)/PutWrapperRef(handle)

J Used by gmem in case of split/merge folio ops. H

SplitFolio(handle, folio)/MergeFolio(handle, folio)

AllocateFolio(handle)

core-mm->Wrapper)

| folio_put callback

inode is associated with wrapper object and folio is not owned by the wrapper)

| folio_put relay

- update offset states i.e. tready -> unallocated or

tpending to tready or ufapending -> ufa

- TransferOwnership to wrapper for tpending -> tready transition

-merge the folio when last folio does ufapending -> ufa transition.
- Drop the refcount of wrapper object.

folio’is owned by the wrapper)

)

for last folio of hugepage

- Merge the folio

- free the folio back to base allocator
- drop the refcount of wrapper object

[core—mm ‘ ‘ base allocator ‘ lwrapper]

guest_|

memfd

