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Guest_memfd: Huge Page Folio Support

e Faultable ranges are backed by split folios.

e It should be safe to merge the page back when complete hugepage range
becomes unfaultable or is truncated.

e Guest_memfd needs to return folios to the allocator as they were allocated.
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1) truncate should be allowed when file offsets are allocated
2) faulting is allowed on unallocated/allocated states only
Question: 1) after truncate, is it desirable to transition the offsets to previous faultable/unfaultable states?
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Issue: Does it make sense to introduce fapending?

e Deferring split of the folio till shared faults happen, can cause guest_memfd
users to wrongly think that the folio can still be mapped at larger size.
e Better would be to implement eager split during memory conversion.
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Issue: Restoring folios before vs after inode cleanup

e Keeping inode alive till all folios are returned to their unsplit state is problematic.
o Inode truncate will not get triggered unless userspace explicitly does so.

e Option: Introduce an allocator wrapper which can stick around till all the folios

are restored.
o Can be implemented as part of mm/guest_memfd library.
o Should handle folio_put callback and relay it to guest_memfd if needed.
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Guest_memfd Usecases
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Initial faultable unallocated -
o Non-CoCo VMs, SNP VMs

Initial unfaultable unallocated -
o TDXVMs

Faultable allocated -> truncate pending
o  Memory ballooning with non-coco VMs

Unfaultable allocated -> truncate ready
o Inode cleanup

Truncate ready -> faultable unallocated
o Memory ballooning

Truncate ready -> unfaultable unallocated
o Noreal usecase yet
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| core-mm ‘ ‘ base allocator J ‘wrapper ‘

guest_memfd
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CreateWrapperInstance(inode)

1) Create wrapper object
2) associate supplied inode with the wrapper object

Cleanup ) ‘

ReleaseWrapperInstance(handle, inode)

1) Disassociate inode from the wrapper instance
2) Drop the refcount on wrapper instance
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| Used by gmem
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EnableFolioPutCallback(handle, folio)

| Used by gmem in case of shared -> private callback b]
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GetWrapperRef(handle)/PutWrapperRef(handle)

J Used by gmem in case of split/merge folio ops. H

SplitFolio(handle, folio)/MergeFolio(handle, folio)

AllocateFolio(handle)

core-mm->Wrapper )
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inode is associated with wrapper object and folio is not owned by the wrapper )

| folio_put relay

- update offset states i.e. tready -> unallocated or

tpending to tready or ufapending -> ufa

- TransferOwnership to wrapper for tpending -> tready transition

-merge the folio when last folio does ufapending -> ufa transition.
- Drop the refcount of wrapper object.
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