Linux

Plumbers
Conference

a, Austria | September 18-20, 2024

1G page support for guest_memfd

and how to support CoCo VM use cases effectively

Vishal Annapurve, Ackerley Tng

LINUX
PLUMBERS
CONFERENCE vienna, Austria / Sept. 18-20, 2024

Goals of 1G page support in guest_memfd

Provide physically contiguous 1G pages
Mapping 1G pages is out of scope

Avoid double-allocation with CoCo VMs when backing shared and private memory ranges using
1G physically contiguous memory.

LINUX
PLUMBERS
CONFERENCE vienna, Austria / Sept. 18-20, 2024

Option for source of 1G pages: HugeTLB

Implemented in RFC [1]
Refactor HugeTLB to extract allocator component
Pro: Graceful transition from HugeTLBfs to guest_memfd
Near term: Allows co-tenancy of HugeTLBfs and guest_memfd backed VMs
No need to give up memory savings from HugeTLBfs Vmemmap Optimization
(HVO)
Pro: Can provide iterative steps toward a new future allocator
Con: Dependency on HugeTLB
Unexplored: Managing userspace-visible changes e.g. HugeTLB'’s free_hugepages

[1] RFC: https://lore kernel.org/all/cover. 1726009989 git.ackerleytng@google.com/T

LINUX
PLUMBERS
CONFERENCE vienna, Austria / Sept. 18-20, 2024

https://lore.kernel.org/all/cover.1726009989.git.ackerleytng@google.com/T/

Option: Contiguous Memory Allocator (CMA)

Port some HugeTLB features to be applied on CMA

e.g. 1G page pools, HugeTLB Vmemmap Optimization (HVO)
Pro: Clean slate
Con: Rebuilding/duplicating HugeTLB features

LINUX
PLUMBERS
CONFERENCE vienna, Austria / Sept. 18-20, 2024

Current guest_memfd model causes double allocation

guest_memfd only supports backing private memory
Need separate memory store to back shared memory

Guests can convert memory at 4K granularity
During conversion, userspace VMM needs to unback private guest memory backing.
If private memory is backed by 1G pages, its subranges can’t be unbacked.

LINUX
PLUMBERS
CONFERENCE vienna, Austria / Sept. 18-20, 2024

Double-allocation problem, illustrated

1G page

private memory

LINUX
PLUMBERS
CONFERENCE vienna, Austria / Sept. 18-20, 2024

Double-allocation problem, illustrated

1G page

convert 4K page for
shared memory

4K page
[Guest requests to }

shared memory

private memory

LINUX
PLUMBERS
CONFERENCE vienna, Austria / Sept. 18-20, 2024

Double-allocation problem, illustrated

4K page
Guest requests to }

convert 4K page for
shared memory

shared memory

LINUX
PLUMBERS
CONFERENCE vienna, Austria / Sept. 18-20, 2024

1G page

private memory

Punching out a
sub-hugepage
doesn't free
memory

Solution for double-allocation (RFC [1])

Allow mmap() and fault in only shared ranges (built on Fuad's series [2])
Invariant: private ranges should not be faultable by userspace
Split 1G pages so only shared memory ranges can be faulted in. [3]
Reconstruct 1G pages back when entire hugepage range is private

[1] RFC: https://lore.kernel.org/all/cover.1726009989.git.ackerleytng@google.com/T
[2] Fuad's series: https://lore kernel.org/all/20240801090117.3841080-1-tabba@google.com/T
[3] Discussed in Linux MM Alignment Session: https://lore kernel.org/all/202407/12232937.2861/88-1-ackerleving@google.com

LINUX
PLUMBERS
CONFERENCE vienna, Austria / Sept. 18-20, 2024

https://lore.kernel.org/all/cover.1726009989.git.ackerleytng@google.com/T/
https://lore.kernel.org/all/20240801090117.3841080-1-tabba@google.com/T/
https://lore.kernel.org/all/20240712232937.2861788-1-ackerleytng@google.com/

Issue: Hugepage reconstruction blocked on active users

guest_memfd needs to return hugepages to the allocator on cleanup
Subpage ranges may still be in use when inode cleanup happens
Hence cannot wait for safe_refcount like in Elliot’s patch series [1]
Option:
Guest_memfd marks shared page as a special type of page.
guest_memfd drops all the refcounts on truncation (or conversion to private).
Core-mm invokes a callback on such special pages when folio_put hits a refcount of
O.
guest_memfd reconstructs huge pages through this callback.
Suggestions?

[1] Elliot’s series: https://lore kernel.org/all/20240829-guest-memfd-lib-v2-0-b9afclff3656@guicinc.com/T

LINUX
PLUMBERS
CONFERENCE vienna, Austria / Sept. 18-20, 2024

https://lore.kernel.org/all/20240829-guest-memfd-lib-v2-0-b9afc1ff3656@quicinc.com/T/

Issue: Elevated refcounts on private hugepage ranges

Example scenario: Split of private hugepage on conversion of subpage range to shared

Extra refcounts can be grabbed by KVM/arch subsystem.

Option: Agree to following policy?
Guest memfd owns all long-term refcounts on private memory
Any short-term refcounts distributed outside guest_memfd should be protected by folio
locks.

[1] Elliot’s series: https://lore kernel.org/all/20240829-guest-memfd-lib-v2-0-b9afclff3656@guicinc.com/T

LINUX
PLUMBERS
CONFERENCE vienna, Austria / Sept. 18-20, 2024

https://lore.kernel.org/all/20240829-guest-memfd-lib-v2-0-b9afc1ff3656@quicinc.com/T/

Issue: Elevated refcounts on shared hugepage ranges

Example scenario: Split of shared hugepage on conversion of subpage range to private
Extra refcounts can be grabbed by userspace/kernel.
Options on the next slides

LINUX
PLUMBERS
CONFERENCE vienna, Austria / Sept. 18-20, 2024

Option: Always split shared memory to 4K granularity (RFC)

Hugepage is always split to 4k granularity if any subrange is shared

4 N

1G private 2M Page
page S y
‘ A

Private -> 2M Page
|oococasasassaccasasasssansracasasasasseasasasa | Shared = 1% 4

2M Range 8

.. 9 y
‘ R

2M Page
_ v

LINUX
PLUMBERS
CONFERENCE vienna, Austria / Sept. 18-20, 2024

Option: Disallow splitting of shared hugepages

No splitting means no need to handle refcounts
Implication: Guests need to convert exact ranges back to private which were marked as shared
before.

1G shared

. 83

Shared -> Private

LINUX
PLUMBERS
CONFERENCE vienna, Austria / Sept. 18-20, 2024

Option: Disallow splitting/reconstruction of shared hugepages

No splitting means no need to handle refcounts
Implication: Guests need to convert exact ranges back to private which were marked as shared

before.
If the last private subpage is converted to shared, don’t merge, so that splitting is never required
4 N 4 N
2M Page 2M Page
> < > X
2M Page ‘ 2M Page
L Private -> [)
Shared
K
L) L)
4 N ‘: R
2M Page 2M Page
_ v o v
LINUX
PLUMBERS
CONFERENCE vVienna, Austria / Sept. 18-20, 2024

Thanks!

Backup slides follow

LINUX
PLUMBERS
CONFERENCE vienna, Austria / Sept. 18-20, 2024

Why 1G pages in guest_memfd?

VM performance
Increase TLB hit rate and reduce page walks on TLB miss
Improved 1O performance
Memory savings of ~1.6% from HugeTLB Vmemmap Optimization (HVO)
Bring guest_memfd to parity with existing VMs that use HugeTLB pages for backing memory

LINUX
PLUMBERS
CONFERENCE vienna, Austria / Sept. 18-20, 2024

Conversion flow

1. Userspace uses KYM_SET_MEMORY_ATTRIBUTES ioctl to request conversion of range
> If pageis shared, guest_memfd unmaps entire hugepage range

a. Ifpageis private, only requested shared range is unmapped from guest-to-host page tables
3 Atfaulttime, page is split and mapped back as with new shared/private status

LINUX
PLUMBERS
CONFERENCE vienna, Austria / Sept. 18-20, 2024

What does HugeTLB refactoring involve?

Broadly involves separating the HugeTLB allocator away from the rest of HugeTLB
More modularity
No functionality change intended
Likely step towards HugeTLB’s integration into core-mm
guest_memfd will use just the allocator component of HugeTLB, not including the complex parts of HugeTLB like
Userspace reservations (resv_map)
Shared PMD mappings
Special page walkers

LINUX
PLUMBERS
CONFERENCE vienna, Austria / Sept. 18-20, 2024

HugeTLB features and refactoring

v CONFERENCE Vvienna, Austria / Sept. 18-20, 2024

HugeTLB features and refactoring

v CONFERENCE vienna, Austria / Sept. 18-20, 2024

What features need to be ported from HugeTLB?

Improved allocation guarantees
Per NUMA node pool of huge pages
Subpools per guest_memfd
Memory savings
HugeTLB Vmemmap Optimization
Configuration/reporting features
Configuration of number of pages available (and per NUMA node) at and after host boot
Reporting of memory usage/availability statistics at runtime

LINUX
PLUMBERS
CONFERENCE vienna, Austria / Sept. 18-20, 2024

What will the refactored interface look like?

Allocator provides these functions
. reserve(node, page_size, num_pages) => opague handle
allocate(handle, mempolicy, page_size) => folio
split(handle, folio, target_page_size) => void
reconstruct(handle, first_folio, nr_pages) => void
free(handle, folio) => void
error(handle, folio) => void
. unreserve(handle) => void
Interface will allow allocator to be replaced

LINUX
PLUMBERS
CONFERENCE vienna, Austria / Sept. 18-20, 2024

guest_memfd allocator interface

Let userspace choose allocator
HugeTLB, or
Other allocator for other types of memory, like Nvidia's Extended GPU Memory (EGM)

ops structure with these hooks

reserve(node, page_size, num_pages) => opague handle
allocate(handle, mempolicy, page_size) => folio
split(handle, folio, target_page_size) => void
reconstruct(handle, first_folio, nr_pages) => void
free(handle, folio) => void
error(handle, folio) => void
unreserve(handle) => void

LINUX
PLUMBERS
CONFERENCE vienna, Austria / Sept. 18-20, 2024

RFC: Preventing Races (kvm_gmem_)

semaphore should_set_attributes | get_pfn fault allocate punch_hole | error_folio
filemap_invalidate_lock write lock shared | shared write lock
(read) (read)
lock lock
hugetlb_fault_mutex_lock | taken taken taken taken taken
KVM_MMU_LOCK taken taken

LINUX
PLUMBERS
CONFERENCE vienna, Austria / Sept. 18-20, 2024

