

1G page support for guest_memfd
and how to support CoCo VM use cases effectively

Vishal Annapurve, Ackerley Tng

Goals of 1G page support in guest_memfd

• Provide physically contiguous 1G pages
• Mapping 1G pages is out of scope

• Avoid double-allocation with CoCo VMs when backing shared and private memory ranges using
1G physically contiguous memory.

Option for source of 1G pages: HugeTLB

• Implemented in RFC [1]
• Refactor HugeTLB to extract allocator component
• Pro: Graceful transition from HugeTLBfs to guest_memfd

• Near term: Allows co-tenancy of HugeTLBfs and guest_memfd backed VMs
• No need to give up memory savings from HugeTLBfs Vmemmap Optimization

(HVO)
• Pro: Can provide iterative steps toward a new future allocator
• Con: Dependency on HugeTLB

• Unexplored: Managing userspace-visible changes e.g. HugeTLB’s free_hugepages

[1] RFC: https://lore.kernel.org/all/cover.1726009989.git.ackerleytng@google.com/T/

https://lore.kernel.org/all/cover.1726009989.git.ackerleytng@google.com/T/

Option: Contiguous Memory Allocator (CMA)

• Port some HugeTLB features to be applied on CMA
• e.g. 1G page pools, HugeTLB Vmemmap Optimization (HVO)

• Pro: Clean slate
• Con: Rebuilding/duplicating HugeTLB features

Current guest_memfd model causes double allocation

• guest_memfd only supports backing private memory
• Need separate memory store to back shared memory

• Guests can convert memory at 4K granularity
• During conversion, userspace VMM needs to unback private guest memory backing.
• If private memory is backed by 1G pages, its subranges can’t be unbacked.

Double-allocation problem, illustrated

1G page

private memory

Double-allocation problem, illustrated

Guest requests to
convert 4K page for

shared memory

4K page

shared memory

1G page

private memory

Double-allocation problem, illustrated

Guest requests to
convert 4K page for

shared memory

4K page

shared memory

1G page

private memory

Punching out a
sub-hugepage

doesn’t free
memory

Solution for double-allocation (RFC [1])

• Allow mmap() and fault in only shared ranges (built on Fuad’s series [2])
• Invariant: private ranges should not be faultable by userspace

• Split 1G pages so only shared memory ranges can be faulted in. [3]
• Reconstruct 1G pages back when entire hugepage range is private

[1] RFC: https://lore.kernel.org/all/cover.1726009989.git.ackerleytng@google.com/T/
[2] Fuad’s series: https://lore.kernel.org/all/20240801090117.3841080-1-tabba@google.com/T/
[3] Discussed in Linux MM Alignment Session: https://lore.kernel.org/all/20240712232937.2861788-1-ackerleytng@google.com/

https://lore.kernel.org/all/cover.1726009989.git.ackerleytng@google.com/T/
https://lore.kernel.org/all/20240801090117.3841080-1-tabba@google.com/T/
https://lore.kernel.org/all/20240712232937.2861788-1-ackerleytng@google.com/

Issue: Hugepage reconstruction blocked on active users

• guest_memfd needs to return hugepages to the allocator on cleanup
• Subpage ranges may still be in use when inode cleanup happens

• Hence cannot wait for safe_refcount like in Elliot’s patch series [1]
• Option:

• Guest_memfd marks shared page as a special type of page.
• guest_memfd drops all the refcounts on truncation (or conversion to private).
• Core-mm invokes a callback on such special pages when folio_put hits a refcount of

0.
• guest_memfd reconstructs huge pages through this callback.

• Suggestions?

[1] Elliot’s series: https://lore.kernel.org/all/20240829-guest-memfd-lib-v2-0-b9afc1ff3656@quicinc.com/T/

https://lore.kernel.org/all/20240829-guest-memfd-lib-v2-0-b9afc1ff3656@quicinc.com/T/

Issue: Elevated refcounts on private hugepage ranges

• Example scenario: Split of private hugepage on conversion of subpage range to shared
• Extra refcounts can be grabbed by KVM/arch subsystem.
• Option: Agree to following policy?

• Guest memfd owns all long-term refcounts on private memory
• Any short-term refcounts distributed outside guest_memfd should be protected by folio

locks.

[1] Elliot’s series: https://lore.kernel.org/all/20240829-guest-memfd-lib-v2-0-b9afc1ff3656@quicinc.com/T/

https://lore.kernel.org/all/20240829-guest-memfd-lib-v2-0-b9afc1ff3656@quicinc.com/T/

Issue: Elevated refcounts on shared hugepage ranges

• Example scenario: Split of shared hugepage on conversion of subpage range to private
• Extra refcounts can be grabbed by userspace/kernel.
• Options on the next slides

Option: Always split shared memory to 4K granularity (RFC)

• Hugepage is always split to 4k granularity if any subrange is shared

Private ->
Shared

2M Range

1G private
page

2M Page

2M Page

2M Page

…..

4K4K4K
…..

Option: Disallow splitting of shared hugepages

• No splitting means no need to handle refcounts
• Implication: Guests need to convert exact ranges back to private which were marked as shared

before.
1G shared
page

Shared -> Private

Option: Disallow splitting/reconstruction of shared hugepages

• No splitting means no need to handle refcounts
• Implication: Guests need to convert exact ranges back to private which were marked as shared

before.
• If the last private subpage is converted to shared, don’t merge, so that splitting is never required

Private ->
Shared

2M Page

2M Page

2M Page

…..

4K4K4K
…..

2M Page

2M Page

2M Page

…..

4K4K4K
…..

Thanks!

Backup slides follow

Why 1G pages in guest_memfd?

• VM performance
• Increase TLB hit rate and reduce page walks on TLB miss
• Improved IO performance

• Memory savings of ~1.6% from HugeTLB Vmemmap Optimization (HVO)
• Bring guest_memfd to parity with existing VMs that use HugeTLB pages for backing memory

Conversion flow

1. Userspace uses KVM_SET_MEMORY_ATTRIBUTES ioctl to request conversion of range
2. If page is shared, guest_memfd unmaps entire hugepage range

a. If page is private, only requested shared range is unmapped from guest-to-host page tables
3. At fault time, page is split and mapped back as with new shared/private status

What does HugeTLB refactoring involve?

• Broadly involves separating the HugeTLB allocator away from the rest of HugeTLB
• More modularity
• No functionality change intended
• Likely step towards HugeTLB’s integration into core-mm

• guest_memfd will use just the allocator component of HugeTLB, not including the complex parts of HugeTLB like
• Userspace reservations (resv_map)
• Shared PMD mappings
• Special page walkers

HugeTLB features and refactoring

HugeTLB allocator HugeTLB Other supporting components

Actual huge page allocator Userspace reservations (resv_map) Vmemmap Optimization (HVO)

Hstate reservations/accounting mmap(MAP_HUGETLB) HugeTLB cgroup accounting

Subpools Special hugetlb_fault() mem cgroup accounting

Parsing kernel cmdline Shared PMD mappings

Reporting
(/sys/kernel/mm/hugepages)

Userspace page walker

Post-boot adjustment of # hugepages HugeTLBfs

Surplus HugeTLB page allocator memfd_create(MFD_HUGETLB)

HugeTLB features and refactoring

HugeTLB allocator HugeTLB Other supporting components

Actual huge page allocator Userspace reservations (resv_map) Vmemmap Optimization (HVO)

Hstate reservations/accounting mmap(MAP_HUGETLB) HugeTLB cgroup accounting

Subpools Special hugetlb_fault() mem cgroup accounting

Parsing kernel cmdline Shared PMD mappings

Reporting
(/sys/kernel/mm/hugepages)

Userspace page walker

Post-boot adjustment of # hugepages HugeTLBfs

Surplus HugeTLB page allocator memfd_create(MFD_HUGETLB)

Us
ed

 b
y g

ue
st_

m
em

fd

What features need to be ported from HugeTLB?

• Improved allocation guarantees
• Per NUMA node pool of huge pages
• Subpools per guest_memfd

• Memory savings
• HugeTLB Vmemmap Optimization

• Configuration/reporting features
• Configuration of number of pages available (and per NUMA node) at and after host boot
• Reporting of memory usage/availability statistics at runtime

What will the refactored interface look like?

• Allocator provides these functions
• reserve(node, page_size, num_pages) => opaque handle
• allocate(handle, mempolicy, page_size) => folio
• split(handle, folio, target_page_size) => void
• reconstruct(handle, first_folio, nr_pages) => void
• free(handle, folio) => void
• error(handle, folio) => void
• unreserve(handle) => void

• Interface will allow allocator to be replaced

guest_memfd allocator interface

• Let userspace choose allocator
• HugeTLB, or
• Other allocator for other types of memory, like Nvidia’s Extended GPU Memory (EGM)

• _ops structure with these hooks
• reserve(node, page_size, num_pages) => opaque handle
• allocate(handle, mempolicy, page_size) => folio
• split(handle, folio, target_page_size) => void
• reconstruct(handle, first_folio, nr_pages) => void
• free(handle, folio) => void
• error(handle, folio) => void
• unreserve(handle) => void

RFC: Preventing Races (kvm_gmem_)

semaphore should_set_attributes get_pfn fault allocate punch_hole error_folio

filemap_invalidate_lock write lock shared
(read)
lock

shared
(read)
lock

write lock

hugetlb_fault_mutex_lock taken taken taken taken taken

KVM_MMU_LOCK taken taken

