

Address Space Isolation
x86 Microconference

Brendan Jackman <jackmanb@google.com>

Context links:
2024 RFC | Demo branch (with tests + optimisations) | LSF/MM/BPF + recordings

mailto:jackmanb@google.com
https://lore.kernel.org/linux-mm/20240712-asi-rfc-24-v1-0-144b319a40d8@google.com/
https://github.com/googleprodkernel/linux-kvm/tree/asi-lpc-24
https://lwn.net/Articles/974390/
https://lwn.net/Articles/975801/

- Hasty background refresher if needed? (5 mins)
- A look at some perf data (2 mins)
- Discuss how to get this thing merged

Agenda

(Some) CPU Exploits refresher

Mistrain branch
predictors

Attacker domain
(guest/userspace)

Mis-speculate,
access secret

↓
secret residual in
microarchitecture

Victim domain
(host kernel)

recover secret

Attacker domain
(guest/userspace)

🕑 →

 →

 →

Classic example: load from
address depending on secret
value, that address gets cached.

Check access timing to see
which address is cached.
“Flush+Reload”

(Some) CPU Exploits refresher

Mistrain branch
predictors

Attacker domain
(guest/userspace)

Mis-speculate,
access secret

↓
secret residual in
microarchitecture

Victim domain
(host kernel)

recover secret

Attacker domain
(guest/userspace)

🕑 →

 →

 →

Classic example: load from
address depending on secret
value, that address gets cached.

Check access timing to see
which address is cached.
“Flush+Reload”

Can’t happen if
secret isn’t mapped

Chance to intervene on transition
(clear mistraining)

Chance to intervene on transition
(flush data buffers)

ASI refresher

ASI refresher

Performance (Zen2)

Performance = comparable
to bespoke mitigations

Security properties =
comparable to
sledgehammer mitigations

(SMT vulnerable throughout)

I presented something similar at LSF/MM/BPF.
Claimed low-confidence in the data. But now
it’s a different benchmark, different platform,
more evidence for same conclusion. Also
matches experience in Google’s kernel.

generic, slow

bespoke, fast

generic, fast

- Thoughts on RFC…?
- mm folks seemed up for it at LSF/MM/BPF (but Mel wasn’t there)
- “Denylist” approach: start with only protecting GFP_USER directmap

- Probably prevents all existing attacks, but obviously not watertight
- But lets us work in-tree on an ASI that’s actually viable for production
- Build up security from there, with a meaningful performance baseline

- Roadmap for bare-metal sandboxing
- How should users configure it?
- We have tests (KUnit, e2e exploits that stop working)

- Testing mitigations is hard though

Topics for discussion

