Linux

Plumbers
Conference

a, Austria | September 18-20, 2024

Integral Atomic Stack Switching for
IST Exceptions

Jiangshan Lai (Ant Group)

Vienna, Austria

Agenda

X806 IST
Motivation

Atomic-IST-entry
RETBLEED

Vienna, Austria

X860 IST

Linus Torvalds [link]

| absolutely despise all the x86
"Indirect system structures”. They
are horrible garbage. IST is only
yet another example of that kind of
brokenness, and annoys me
particularly because it (and
swapgs) were actually making x86
worse.

)

Thomas Gleixner: [link]

It's a sad state of affairs that | have
to write this mail at all and it's nothing
else than an act of desperation.

The x86 exception handling including
the various ways of syscall entry/exit
are a constant source of trouble.
Aside of being a functional disaster
quite some of these issues have
severe security implications.

Vienna, Austria
Sept. 18-20, 2024 4

https://lore.kernel.org/lkml/875z98jkof.fsf@nanos.tec.linutronix.de/
https://lore.kernel.org/lkml/CAHk-=wimnCtaDhCswqBUag37J1ALDno5dGv4v8Emv0b7SgVgPw@mail.gmail.com/

SYSCALL GAP

SYSCALL/SYSRET
instructions do not switch the
STACK nor the GSBASE

SYSCALL GAP

LINUX PLUMBERS CONFERENCE | set 20, 2024 ;

Current approaches

| original SS Switch off the IST stack to make it free for nested exceptions. The

* ve_switch_off_ist() function will switch back to the interrupted
stack if it is safe to do so. If not it switches to the VC fall-back
stack.

| original Return RSP
| original RFLAGS
| original CS */
| original RIP movq %rsp, %rdi /* pt_regs pointer */
- call vc_switch_off_ist
storage for rdx movq %rax, %rsp /* Switch to new stack */

variable

} Copied from "outermost" frame
Return RSP } on each loop iteration; overwritten
RFLAGS } by a nested NMI to force another
CS } iteration if needed.

/*

* Reserve additional 8 bytes and store old IST value so this
* adjustment can be unrolled in __sev_es_ist_exit().

4

new_ist -= sizeof(old_ist);

*(unsigned long *)new_ist = old_ist;

| outermost SS initialized in first_nmi;

| outermost Return RSP will not be changed before

| outermost RFLAGS NMI processing is done.

| outermost CS Copied to "iret" frame on each
| outermost RIP iteration

/* Set new IST entry */
this_cpu_write(cpu_tss_rw.x86_tss.ist[IST_INDEX_VC], new_ist);

Vienna, Austria
Sept. 18-20, 2024

Motivation

o Convert ASM entry code to C code
o Integral Entry with PVM switcher

o Address Space Isolation

Vienna, Austria

Atomic-IST-entry

/

event A event B
hw entry hw entry

atomic IST entry [

Y

Y

AN

atomic IST entry

Also help
complete A's
atomic entry

~

/

Y
B return
Areturn

handle A return to the point as

. . handle B
if atomic-ist-entry for
A has completed

A
atomic SW'.tCh switch swtich
to a special
stack stack
stack

alaY { CDLCH { E Vienna, Austria
O WU “ NT LN J Vo L Sept. 18-20, 2024

Abortable, ldempotently-Replicable

static __always_inline void pti_switch_to_kernel_cr3(unsigned long user_cr3)

{
/*

* (Clear user PAGE_TABLE_ISOLATION and PCID mask, point CR3
* at kernel pagetables:
a4
unsigned long cr3 = user_cr3 & ~PTI_USER_PGTABLE_AND_PCID_MASK;

if (static_cpu_has(X86_FEATURE_PCID))
cr3 |= X86_CR3_PCID_NOFLUSH;

native_write_cr3(cr3);
}

static __always_inline void ist_switch_to_kernel_cr3(unsigned long saved_cr3)
{
if (static_cpu_has(X86_FEATURE_PTI)) {
if (saved_cr3 & PTI_USER_PGTABLE_MASK)
pti_switch_to_kernel_cr3(saved_cr3);

Vienna, Austria
Sept. 18-20, 2024

How to make an Abortable, Idempotently-Replicable Atomic-IST-entry

Just saving the interrupted context is all we need for an entry before handling the event

Save

As an atomic entry, the original IST must be freed for next event entry, introduce an IST mian stack, copy and switch to it

Save-Copy-Switch

As an abortable, atomic procedure, it should has a finish line to commit, use the fininal instruction switching the %rsp onto the main stack as the commit instruction

Save-Copy-Commit(switch)

Save(head)-Save(gp regs)-Copy-Commit(switch)

As an atomic entry, the innermost event’s copy procedure should also act as a proxy to replicate the aborted copy procedures of the interrupted events, which amounts to copy all
context for all events (interrupted and itself) to the main stack. What suppose to be copied varies depending on whether the event is the outmost or not. Define two sub procedures for it.

Save-Save-Copy(outmost)-Copy(nested)-Commit(switch)

Locate/identify: which is the outmost, where to copy to, where is the save stage1 saved, and where is the save stage2 saved.

Save-Save-Locate-Copy(outmost)-Copy(nested)-Commit(switch)
LINUX PLUMBERS CONFERENCE | st 620 2024

Atomic-IST-entry: full picture
Procedure view and Data view

non-atomic-IST-entry
context (start point)

>

outmost

eventA
hw entry
(save stage1)

Y

 EE—
push gp regs
(save stage?2)

nested

push gp regs

nested

event C

\ Interup

t

-

0

hw entry

~—
y
E—

push gp regs

—
Y
 EE——"

Interupt td
Y A
) Y
locate locate
copy_outmost
|
Y
—
T —
commit switch
copy_nested
U
Y
 EEE— - \
copy_outmost < commit switch
\ \. J
 CE— CEE—
copy_outmost < copy_nested

locate

copy_nested

i |

A 4

commit switch

succeed to commit
(end point)

Event A's Event B's Event C's IST main
IST stack IST stack IST stack stack
Locate where to copy to
(start point) on the IST main stack.
top or the last used.
syscall gaps are checked.
non atomic SS
ISTentry [g most) |_ rsp full context
context [ss copy_outmos interrupted
~ rsp locate and copy rflags by/’z\)
— rflags exception head ? C.S
CS rp copy_outmost()
rp ecode locate where are the
A 4 ecode ap interrupt context are
gp regs saved for each part and
hw entry copy them to the IST
EventA regs main stack
abort at ASM SS ss
pushing gp
regs rsp rsp
T rflags rflags
A 4 |_ CS copy_nested() [cs
hw entry rip rip | Event.A.'s
Event B % ecode ecode commit ip
rep abont afier TSM ap ss copy_nested()
COPY g P regs rsp 9p ss/cs/rflags: fixed value
regs errocde: copied
_g_rfla S rsp: point at the outer
CS event's copied frame on
Y. rip SS IST main stack
ecode rsp rip: outer event commit ip
Event C ap opy_nested ()ﬂags gp regs: zeroed
rep hw entry N regs CcS .
copy — ﬁ = Event B's
P —> commit ip
ecode
ap
success to 1 5 [regs
commit - rspy o ”
>P_= Event C's commit ip

(end point)

Handler after atomic-IST-entry start from here

Vienna, Austria
Sept. 18-20, 2024

Replicative Bleeding

According to RetBleed mess (as PeterZ pointed out), you can NOT call a function and do a
RET before:

IBRS ENTER;
UNTRAIN RET FROM CALL:

in entry code.

Three choices:

« No function call and no RET in atomic-IST-entry

« Make UNTRAIN_RET FROM CALL usable in early entry stage

« Add new stages to set kernel CR3/GSBASE/SPEC_CTRL in atomic-IST-entry

)

‘) \ -] ‘ ’ Vienna, Austria
‘ ‘ Sept. 18-20, 2024 12

No function call and no RET

* Rewrite the C copy function with ASM
* Not reviewable, Not maintainable
 Contradict with the aim of conveting ASM code to C code

Hack with return thunk

Create individual copy functions for each IST event to ensure each function is called
from one place only

Compile them with -mfunction-return=thunk-extern or function_return("thunk-extern")
Patch those “l/mp _ x86 return_thunk” to jump to the respective only return address
on build time or boot time.

Jump to those copy functions instead of calling to them from the entry ASM code

Vienna, Austria
Sept. 18-20, 2024 13

Make UNTRAIN_RET FROM CALL usable in early entry stage

. Split UNTRAIN_RET _FROM_CALL

* A part is done before CR3/GSBASE/SPEC_CTR is switched
» A part is after paranoid_entry()

* Pros
» Keep the atomic-IST-entry simple

« Cons
« The ASM version UNTRAIN_RET FROM_CALL which is not

in ist_entry.c has also to be in atomic-IST-entry, required to be
Abortable, Idempotently-Replicable

ﬂ » Unsure if it can be possible

Vienna, Austria
Sept. 18-20, 2024 14

Add new stages to set kernel CR3/GSBASE/SPEC _CTRL

* Add save stage3 (ASM) to save system registers(CR3/GSBASE/SPEC_CTRL)
« saving system registers clobbers gp registers, so it has to be a new save stage

» Locate stage also locates where save stage3 saved

» Copy(outmost) state also copy what save stage3 saved

» Add kernel-ize state to set CR3/GSBASE/SPEC_CTRL to kernel value which is also
Abortable, Idempotently-Replicable.

» Copy(nested) copies the kernel values of CR3/GSBASE/SPEC_CTRL

Save-Save-Save-Locate-kernel-ize-Copy(outmost)-Copy(nested)-Commit(switch)

Pros:
 Implement paranoid_entry() in C which is also in our mission
* No more bleed

Cons:

« Too much code is in atomic-IST-entry, all of them is required to be Abortable,
|dempotently-Replicable.
* Add C version UNTRAIN_RET_FROM_CALL.

. H ‘ D ’ 1R PAS) {;‘,g i ‘ : Vienna, Austria
LINUX PLUMBERS CONFERENCE Sept. 18-20, 2024 5

Suggestion?

For | RETURN to update the code

Hack with return thunk or New stages?

LINUX PLUMBERS CONFERENCE | set 20, 2024

16

Links

[tglx] https://lore.kernel.org/lkml/875z98jkof.fsf@nanos.tec.linutronix.de/
[linus] https://lore.kernel.org/lkml/CAHk-=wimnCtaDhCswgBUag37J1ALDNno5dGv4v8Emv0Ob7SgVagPw@mail.gmail.com/

[andy] https://lore.kernel.org/Ikml/CALCETrU9XypKbj-TrXLB3CPW6=MZ__ 5ifLz0ckbB=c=Myegn9Q@mail.gmail.com/
[andrew] https://docs.google.com/document/d/1hWejnyDkiRRAW-JEsR]A5cOCKLOPc6VKJQsuvODIQEI/edit#
[asm-to-c]: https://lore.kernel.org/lkml/20211126101209.8613-1-jiangshanlai@gmail.com/

[atomic-ist-entry] https://lore.kernel.org/lkml/20230403140605.540512-1-jiangshanlai@gmail.com/

[pvm] https://github.com/virt-pvm/linux/tree/pvm

LINUX PLUMBERS CONFERENCE | set 20, 2024 .

https://lore.kernel.org/lkml/875z98jkof.fsf@nanos.tec.linutronix.de/
https://lore.kernel.org/lkml/CAHk-=wimnCtaDhCswqBUag37J1ALDno5dGv4v8Emv0b7SgVgPw@mail.gmail.com/
https://lore.kernel.org/lkml/CALCETrU9XypKbj-TrXLB3CPW6=MZ__5ifLz0ckbB=c=Myegn9Q@mail.gmail.com/
https://docs.google.com/document/d/1hWejnyDkjRRAW-JEsRjA5c9CKLOPc6VKJQsuvODlQEI/edit
https://lore.kernel.org/lkml/20211126101209.8613-1-jiangshanlai@gmail.com/
https://lore.kernel.org/lkml/20230403140605.540512-1-jiangshanlai@gmail.com/
https://github.com/virt-pvm/linux/tree/pvm

Thanks!
Q&A

Linux

Plumbers
Conference

a, Austria | September 18-20, 2024

