
1



Integral Atomic Stack Switching for 
IST Exceptions

Jiangshan Lai (Ant Group)

2



3

Agenda

X86 IST
Motivation

Atomic-IST-entry
RETBLEED



4

X86 IST
Thomas Gleixner: [link]

It's a sad state of affairs that I have 
to write this mail at all and it's nothing 
else than an act of desperation.

The x86 exception handling including 
the various ways of syscall entry/exit 
are a constant source of trouble. 
Aside of being a functional disaster 
quite some of these issues have 
severe security implications.

Linus Torvalds [link]

I absolutely despise all the x86 
"indirect system structures". They 
are horrible garbage. IST is only 
yet another example of that kind of 
brokenness, and annoys me 
particularly because it (and 
swapgs) were actually making x86 
_worse_.

https://lore.kernel.org/lkml/875z98jkof.fsf@nanos.tec.linutronix.de/
https://lore.kernel.org/lkml/CAHk-=wimnCtaDhCswqBUag37J1ALDno5dGv4v8Emv0b7SgVgPw@mail.gmail.com/


5

SYSCALL GAP

SYSCALL/SYSRET 
instructions do not switch the 
STACK nor the GSBASE



6

Current approaches



7

Motivation

o Convert ASM entry code to C code

o Integral Entry with PVM switcher

o Address Space Isolation



8

Atomic-IST-entry



9

Abortable, Idempotently-Replicable

airworthiness certific
ated



Save-Copy-Switch

Save-Save-Locate-Copy(outmost)-Copy(nested)-Commit(switch)

Save

Save-Copy-Commit(switch)

Save(head)-Save(gp regs)-Copy-Commit(switch)

Save-Save-Copy(outmost)-Copy(nested)-Commit(switch)

How to make an Abortable, Idempotently-Replicable Atomic-IST-entry
Just saving the interrupted context is all we need for an entry before handling the event

As an atomic entry, the original IST must be freed for next event entry, introduce an IST mian stack, copy and switch to it

As an abortable, atomic procedure, it should has a finish line to commit, use the fininal instruction switching the %rsp onto the main stack as the commit instruction

The save sub procedure is not hardware-atomically, which can be interrupted and abort at any point, split the save procedure as two procedures

As an atomic entry, the innermost event’s copy procedure should also act as a proxy to replicate the aborted copy procedures of the interrupted events, which amounts to copy all 
context for all events (interrupted and itself) to the main stack. What suppose to be copied varies depending on whether the event is the outmost or not. Define two sub procedures for it.

Locate/identify: which is the outmost, where to copy to, where is the save stage1 saved, and where is the save stage2 saved.



11

Atomic-IST-entry: full picture
Procedure view and Data view



12

Replicative Bleeding

According to RetBleed mess (as PeterZ pointed out), you can NOT call a function and do a 
RET before:

IBRS_ENTER;
UNTRAIN_RET_FROM_CALL;

in entry code.

Three choices:
• No function call and no RET in atomic-IST-entry
• Make UNTRAIN_RET_FROM_CALL usable in early entry stage
• Add new stages to set kernel CR3/GSBASE/SPEC_CTRL in atomic-IST-entry



13

No function call and no RET

• Rewrite the C copy function with ASM
• Not reviewable, Not maintainable
• Contradict with the aim of conveting ASM code to C code

• Hack with return thunk
• Create individual copy functions for each IST event to ensure each function is called 

from one place only
• Compile them with -mfunction-return=thunk-extern or function_return("thunk-extern")
• Patch those “jmp __x86_return_thunk” to jump to the respective only return address 

on build time or boot time.
• Jump to those copy functions instead of calling to them from the entry ASM code



14

Make UNTRAIN_RET_FROM_CALL usable in early entry stage

• Split UNTRAIN_RET_FROM_CALL 
• A part is done before CR3/GSBASE/SPEC_CTR is switched
• A part is after paranoid_entry()

• Pros
• Keep the atomic-IST-entry simple

• Cons
• The ASM version UNTRAIN_RET_FROM_CALL which is not 

in ist_entry.c has also to be in atomic-IST-entry, required to be 
Abortable, Idempotently-Replicable

• Unsure if it can be possible



15

Add new stages to set kernel CR3/GSBASE/SPEC_CTRL

Save-Save-Save-Locate-kernel-ize-Copy(outmost)-Copy(nested)-Commit(switch)

• Add save stage3 (ASM) to save system registers(CR3/GSBASE/SPEC_CTRL)
• saving system registers clobbers gp registers, so it has to be a new save stage

• Locate stage also locates where save stage3 saved
• Copy(outmost) state also copy what save stage3 saved
• Add kernel-ize state to set CR3/GSBASE/SPEC_CTRL to kernel value which is also 

Abortable, Idempotently-Replicable.
• Copy(nested) copies the kernel values of CR3/GSBASE/SPEC_CTRL

Pros:
• Implement paranoid_entry() in C which is also in our mission
• No more bleed

Cons:
• Too much code is in atomic-IST-entry, all of them is required to be Abortable, 

Idempotently-Replicable.
• Add C version UNTRAIN_RET_FROM_CALL.



16

Suggestion?
For I RETURN to update the code

Hack with return thunk or New stages?



17

Links
[tglx] https://lore.kernel.org/lkml/875z98jkof.fsf@nanos.tec.linutronix.de/
[linus] https://lore.kernel.org/lkml/CAHk-=wimnCtaDhCswqBUag37J1ALDno5dGv4v8Emv0b7SgVgPw@mail.gmail.com/
[andy] https://lore.kernel.org/lkml/CALCETrU9XypKbj-TrXLB3CPW6=MZ__5ifLz0ckbB=c=Myegn9Q@mail.gmail.com/
[andrew] https://docs.google.com/document/d/1hWejnyDkjRRAW-JEsRjA5c9CKLOPc6VKJQsuvODlQEI/edit#
[asm-to-c]: https://lore.kernel.org/lkml/20211126101209.8613-1-jiangshanlai@gmail.com/
[atomic-ist-entry] https://lore.kernel.org/lkml/20230403140605.540512-1-jiangshanlai@gmail.com/
[pvm] https://github.com/virt-pvm/linux/tree/pvm

https://lore.kernel.org/lkml/875z98jkof.fsf@nanos.tec.linutronix.de/
https://lore.kernel.org/lkml/CAHk-=wimnCtaDhCswqBUag37J1ALDno5dGv4v8Emv0b7SgVgPw@mail.gmail.com/
https://lore.kernel.org/lkml/CALCETrU9XypKbj-TrXLB3CPW6=MZ__5ifLz0ckbB=c=Myegn9Q@mail.gmail.com/
https://docs.google.com/document/d/1hWejnyDkjRRAW-JEsRjA5c9CKLOPc6VKJQsuvODlQEI/edit
https://lore.kernel.org/lkml/20211126101209.8613-1-jiangshanlai@gmail.com/
https://lore.kernel.org/lkml/20230403140605.540512-1-jiangshanlai@gmail.com/
https://github.com/virt-pvm/linux/tree/pvm


18

Thanks!
Q&A


