


Post-Copy Live Migration with 
guest_memfd

James Houghton
jthoughton@google.com



Goals

● Review the scope of “KVM Userfault”

● Settle on the userspace API for KVM Userfault

● Discuss guest_memfd’s interaction with userfaultfd



Problem

● Need to support post-copy for memory-encrypted VMs

● Need to support post-copy for regular VMs that use guest_memfd

● Need post-copy to scale to 400+ vCPUs



Post-copy with memory-encrypted VMs today: procedure

● It can technically be done, with caveats

Procedure:

1. Do not set any memory to KVM_MEMORY_ATTRIBUTE_PRIVATE, register 
guest memory VMAs with userfaultfd

2. Guest-private faults will exit to userspace
a. Page-in, set KVM_MEMORY_ATTRIBUTE_PRIVATE, resume vCPU

3. Guest-shared faults will go to userfaultfd, page-in normally



Post-copy with memory-encrypted VMs today: caveats

● Changing memory attributes is expensive
○ Setting attributes doesn’t scale

■ We take mmu_lock and slots_lock
○ Requires dynamic memory allocations (xarray)
○ We need to have demand-fetch resolution in <50us

■ ~20,000 per vCPU per second, 100+ vCPUs
● For non-memory-encrypted VMs, all faults will go to userfaultfd initially
● Ideally leave memory attributes alone, so we need something else…



Intercepting accesses to guest_memfd memory

● guest_memfd will be mmap()-able, faults on non-private memory will succeed
● Non-guest accesses to non-private memory will use the userspace page tables

○ userfaultfd is usable for post-copy in this case
● Guest accesses to private cannot use GUP

○ Need a method of intercepting these
● Will guest accesses to non-private memory use GUP?

○ Most likely not, but the answer doesn’t matter



KVM Userfault: concept

● KVM API to prevent guest accesses to any memory
● Does not intercept KVM’s own accesses to guest memory

○ Only possible for guest-shared memory; we can just use userfaultfd
● KVM Userfault is not tied to guest_memfd

○ Instead: per-memslot bitmap



KVM Userfault: UAPI

● Enable with memslot flag KVM_MEM_USERFAULT
○ While enabled: faults will be at PAGE_SIZE only

● For each memslot, there is a bitmap describing if a guest-fault should exit
○ No reason to use memory attributes: “userfault” is transient

● Exit will be KVM_EXIT_MEMORY_FAULT
○ flags has KVM_MEMORY_EXIT_FLAG_USERFAULT

● On fault, userspace will write page contents and update the bitmap
● Collapse (or zap) page tables when KVM_MEM_USERFAULT is cleared



KVM Userfault: bitmap

● Stored entirely in userspace?
○ Each fault would need to copy_from_user() to check the bitmap
○ Userspace must be careful to order memory operations correctly when clearing bits in the bitmap

■ i.e. smp_wmb() between memory installation and bitmap update
■ But it probably already needs to be careful

○ Userspace will likely need a bitmap no matter what; saves a copy in KVM
○ Pass in using unused space in kvm_userspace_memory_region2?
○ I like this option

● Stored in KVM?
○ Need another syscall to update it

■ Bitmap needs an update for each demand-fetch, so an extra syscall per demand-fetch
■ When updating bitmap, KVM has the chance to collapse page tables



KVM Userfault and userfaultfd

● KVM Userfault and userfaultfd are completely different
● We still use userfaultfd for non-guest-private memory

○ KVM Userfault does not replace userfaultfd
● KVM Userfault replaces KVM_CAP_EXIT_ON_MISSING (never merged)

○ Enables post-copy scalability improvement when using userfaultfd



Userfaultfd-enlightenment of guest_memfd

● Guest-private faults will use KVM Userfault
● Non-private faults will go to vm_ops→fault

○ Needs to be userfaultfd-enlightened
● Userfaultfd enlightenment is anon-, shmem-, and hugetlbfs-specific

○ No other filesystems (including guest_memfd) participate
● Proposal: fs-generic minor fault mode

○ On fault: instead of calling vm_ops→fault, call handle_userfault().
○ On resolution: call vm_ops→fault and install a PTE/PMD

■ (Or could just call GUP with something like FOLL_NO_GENERIC_UFFD).



Questions


