
Linux Plumbers Conference 2024

Contribution ID: 79 Type: not specified

Revisiting XSAVE: Lessons from 20 Years of
Processor Context State Management

Friday, 20 September 2024 17:50 (20 minutes)

Prior to the XSAVE introduction, managing the processor’s context state
was handled on a per-feature basis. XSAVE normalized this by making state
management independent of the CPU feature set. The XSAVE architecture has
since evolved with optimizations, such as compacting the state format and
tweaks for efficient reloads, resulting in a few XSAVE variants.

This monolithic approach to state management has accommodated the
addition of around 10 features, expanding the overall state size to more
than 10KB from the initial 1KB at the time of XSAVE’s introduction about
20 years ago. Despite this growth, the unified approach has effectively
prevented fragmentation and reduced the complexity that would arise from
managing feature-specific state additions.

During the initial consideration of XSAVE, extensive discussions focused
on the context format in the signal stack. It was emphasized that the new
XSAVE format should be backward-compatible, and self-describing. Then,
the XSAVE uncompacted format was adopted as part of user ABI, considering
CPUID to universally provide the size and fixed offsets while trusting
its proper extensions.

As the XSAVE architecture continued to embrace more feature states, some
of these features were excluded in other CPU implementations. This
uncovered a limitation in the uncompacted format, which proved inflexible
in adapting to these dynamic changes. Unfortunately, the new compacted
format cannot serve as a drop-in replacement for the user ABI, as it is
incompatible with the uncompacted format.

This inflexibility has recently posed challenges in managing large states
like AMX. Given this context, it is worthwhile to revisit the XSAVE story
as a case study from both architectural and kernel perspectives. In the
long run, it may be beneficial to discuss an alternative to the hardware
format. Additionally, considering architectural mitigation could address
the current limitations of the monolithic approach.

Primary author: BAE, Chang (Intel Corporation)

Presenter: BAE, Chang (Intel Corporation)

Session Classification: x86 MC

Track Classification: x86 Microconference


