
Revisit XSAVE
LPC’24 X86 Micro-conference

Lessons from 20 Years of Processor Context State Management 

Chang Bae, Intel



2

Questions
▪What is the XSAVE architecture?
▪How has it performed over time?
▪Why consider an alternative?



3

Questions
▪What is the XSAVE architecture?
• What is its approach?
• How was it adopted by Linux?
• How has the architecture evolved?

▪How has it performed over time?
▪Why consider an alternative?



4

XSAVE Architecture
▪Monolithic approach to context management 
• A generic way to save/restore extended states
• Primary use case: context switching
• Memory layout:
• Extension to the format used by FXSAVE
• Defined by hardware (XSAVE format)



5

XSAVE Architecture (cont.)
▪XSAVE format adopted as part of ABI
• Applied in in signal and core-dump/ptrace frames
• Arguments (historically) [discussion]:
• Offsets are fixed and discoverable for the layout
• No need for a separate descriptor for the layout

• New extended states: 
• Must be managed by XSAVE to be included in the frame
• Otherwise, the kernel fills the states according to the XSAVE format

https://lore.kernel.org/lkml/20080606201421.GE25114@linux-os.sc.intel.com/


6

XSAVE Architecture (cont.)
▪Optimizations
• Performance optimizations (hardware-driven):
• Skip saving initial states: INIT optimization
• Save only modified states: Modified optimization

• Size optimizations:
• Save selected states and compact the buffer
• Dynamically expand the buffer only when detecting first state usage



7

XSAVE and Feature Adoption History
Years XSAVE Variants Features

2023 CET: Control-flow Enforcement Technology

2022 Compact for guest kernel (XSAVEC) PASID: Process Address Space Identifiers

2021 Dynamic states (XFD) AMX: Advanced Matrix Extensions

2020 Supervisor states LBR: Last Branch Record

2016 Compaction+optimization (XSAVES) PKRU: Protection Key Feature

2014 AVX-512: Advanced Vector Extensions 512
MPX: Memory Protection Extensions

2010 Optimization (XSAVEOPT)

2009 AVX: Advanced Vector Extensions

2008 Introduction (XSAVE)

1999 Predecessor (FXSAVE) SSE: Streamline SIMD Extension

https://lore.kernel.org/lkml/20230613001108.3040476-1-rick.p.edgecombe@intel.com/
https://lore.kernel.org/all/20220404103741.809025935@linutronix.de/
https://lore.kernel.org/all/20220207230254.3342514-1-fenghua.yu@intel.com/
https://lore.kernel.org/all/20211021225527.10184-1-chang.seok.bae@intel.com/
https://lore.kernel.org/all/20211021225527.10184-1-chang.seok.bae@intel.com/
https://lore.kernel.org/all/20200512145444.15483-1-yu-cheng.yu@intel.com/
https://lore.kernel.org/all/1593780569-62993-1-git-send-email-kan.liang@linux.intel.com/
https://lore.kernel.org/all/1468253937-40008-1-git-send-email-fenghua.yu@intel.com/
https://lore.kernel.org/lkml/20160212210152.9CAD15B0@viggo.jf.intel.com/
https://lore.kernel.org/all/1392931491-33237-1-git-send-email-fenghua.yu@intel.com/
https://lore.kernel.org/lkml/20141114151816.F56A3072@viggo.jf.intel.com/
https://lore.kernel.org/lkml/20100719225747.372816924@sbs-t61.sc.intel.com/
https://lore.kernel.org/lkml/1239402084.27006.8057.camel@localhost.localdomain/
https://lore.kernel.org/lkml/20080729172917.185593000@linux-os.sc.intel.com/
https://lkml.indiana.edu/hypermail/linux/kernel/9903.0/0269.html


8

Questions
▪What is the XSAVE architecture?
▪How has it performed over time?
• Is the approach still effective?
• Has it scaled efficiently?
• Are the optimizations still relevant?

▪Why consider an alternative?



9

Cases Against Monolithic Design
▪Protection Key Features (PKRU) 
• Need to keep the current state always valid
• switch_to() and flush_thread() write the value eagerly [patch]
• Thus, separately managed in a dedicated storage [series]

▪Supervisor States
• Need to read/modify the state from the XSAVE buffer
• This retrieval can be costly to find the exact location in XSAVE buffer 

due to the compaction logic 

https://lore.kernel.org/all/20210623121456.303919033@linutronix.de/
https://lore.kernel.org/all/20210623120127.327154589@linutronix.de/


10

Cases Against Monolithic Design (cont.)

▪Mitigation for Supervisor States 
• CET: Control-flow Enforcement Technology

• Instead of retrieving, restore the state directly for modify [patch]

▪However, managing separately would simplify these operations

▪Takeaway: This monolithic switching is not always beneficial

https://lore.kernel.org/lkml/20230613001108.3040476-26-rick.p.edgecombe@intel.com/


11

Cases Against XSAVE format as ABI
▪ Inefficient ABI format
• The context layout is fixed and universal across tasks
• This model was viable until disruptive new states emerged
• Some new states are large but not always in use, leading to inefficiencies
▪Mitigations
• Selective expansion through permission-based usage control
• Alternatively, consider a new ABI format, more flexible ABI format

▪Takeaway: The static ABI format is inefficient for dynamic usages



12

Review Hardware-Driven Optimizations
▪Fragile ‘Modified’ optimization 
• Hardware-driven optimization
• Modified optimization is effective for consecutive context saves



13

Questions
▪What is the XSAVE architecture?
▪How has it performed over time?
▪Why consider an alternative?
• What should be the key considerations moving forward? 



14

Summary of Retrospection
▪Monolithic Approach vs Heterogenous State Nature
• Some features require state switches more frequently than scheduler

▪Uniform and Unified Storage Complexity
• Retrieving states for inactive tasks is fragile and costy

▪ Inflexible Context Layout
• Too static for dynamic state usage models

▪Hardware-Driven Optimizations
• Reliance on a single buffer model



15

Closing: Consideration of Alternatives
▪Minimum Architectural Requirements
• Flexibility to save/restore individual states independently
• Allow the kernel to define the context layout format

▪Challenges
• ABI: Transition away from the XSAVE format, introducing a new, 

software-defined format
• Significant rework might be required to shift from monolithic state 

management to a disaggregated state model

▪



16

Discussions


