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Data Placement

Data placement is an unsolved problem in storage
• Reduce TCO & Improve WAF, Space Amplification, and QoS
• Goal is to group data

- Data placement as a logical concept
- No intention to expose physical layout to host

• Support increased media density (NAND &* rotational media)
- Deal with less reliability
- Provide appealing DWPD

Novel Data Placement technologies are hard to adopt
• Changes required at the interface / protocol level

- Changes to standards are required
- Changes to the open-source host software are required
- Community Industry leadership to make technology mainstream is required
- These changes are hard

• The require a clear use-case accepted by the industry
• They take time and effort

• HW/SW Co-Design is difficult to implement
- Requires tight vendor / customer collaboration

Standards Community

Open-Source

Open-Ecosystem
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History: Data Placement Technologies

Data Placement is a prevalent problem across storage consumers & Industries
• Impacts: WAF, TCO, predictability (latencies), and overall performance
Several approaches in the past few years account for innovation in this area
• Well explored design space facilitates a good understanding of the trade-offs 

Block Interface (CNS) Streams / Directives Flexible Data Plac. (FDP) Zoned Storage Open-Channel SSDs
Description & Trade-offs Description & Trade-offs Description & Trade-offs Description & Trade-offs Description & Trade-offs
• Traditional block device
• Most innovation in-device
• Mature host software stack
• WAF ~1: No assurances

• Extension to block device with 
backwards compatibility

• Use of write hints
• DSM deallocation mechanism
• Minor changes to Host SW
• WAF ~1: Initialize & trust

• Extension to block device with 
backwards compatibility

• Capacity-based placement 
without seq. write requirement

• Use of write tags
• DSM deallocation mechanism
• Minor changes to Host SW
• WAF ~1: Iterative query/check

• Departs from block device
• No backwards compatibility
• LBA-based placement with 

strict seq. write requirement
• Explicit host deallocation & 

state machine management
• Major changes to Host SW
• WAF ~1: assured

• Full host-based FTL
• Most innovation in host
• Drastic changes to Host SW
• WAF ~1: Assured

Status

Status

Status Status

Status
• Commonplace for storage 

devices
• Not standardized
• Dropped by the industry

• Little industry traction

• Customer-driver technology
• Blooming adoption & Eco

• Adopted in HDDs (SMR)
• Traction in UFS
• Little traction in NVMe

1970’s
SCSI: 2010’s
NVMe: 2017 NVMe: 2023

SCSI: 2018
NVMe: 2021 NVMe: 2015
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WAF: One Proxy-Metric to Rule Them All

The goal is to compare Data Placement (DP) technologies across these 4 metrics
• WAF (+Space Amp), Performance (BW & latency), Device Utilization, and Engineering Effort
• TCO is a function of all these metrics
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Experimental Space
How is each customer dealing with the 
trade-off across these metrics?
How much can we push device 
utilization at acceptable metrics?
Is 80% of the benefit enough? Other %?

Which DP tech. allows customers to 
meet their requirements at the lowest 
TCO?
What is the trade-off between the initial 
investment and the expected benefits 
on a full deployment?

ZNS WAF can exceed CN
S Gap depending on Host 
implementation

FDP WAF has an upper 
bound at CNS WAF due 
to the internal FTL

WAF is a critical metric to determine 
device utilization in real deploymentsFDP & ZNS used as examples
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Data Placement Today: Technology Overview

Different technologies address the same issue for different use-cases and protocols
• Zoned Storage

- T10/13 stabilized in Zoned Storage (i.e., ZAC/ZBC) for SMR HDDs
- JEDEC is aligning in Zoned UFS for UFS. Leveraging a lot of the work in ZBC-2

• Write Hints
- NVMe is aligning in Flexible Data Placement (FDP) for SSDs

Zoned StorageWrite Hints
Write Model
• Backwards compatibility and incremental changes
• Target generic workloads – with & without SW changes 
• Capacity-based placement through write tags with support 

for random writes, overwrites, and default
• Mechanism to deallocate and avoid device-side GC WAF Guarantees

• Best device WAF: Device WAF ~1 is guaranteed
• End-to-End WAF varies as a function of the engineering effort

Suitability
• Applications with in-built data separation (e.g., data / 

metadata, hot / cold, diff. object sizes, data streams
• Low engineering effort for first 80% benefit

Write Model
• No backwards combability. Changes are all / nothing
• LBA-based placement with strict sequential write and no-

overwrite constraints. ZAC/ZBC allow RW zones
• Explicit host deallocation and state machine management

WAF Guarantees
• No explicit guarantee by design - WAF improves as a 

function of the engineering effort in applications
• Variable through device lifetime as host support is improved Suitability

• Fully sequential Apps / FSs with in-built GC and data objects 
that can be directly mapped zones (e.g., ZonedUFS in F2FS)

• High engineering effort for 100% of benefit. Especially true 
for applications with slight unalignment (e.g., metadata 
overwrites)
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Data Placement Today: Industry Alignment

Write Hints Zoned Storage

NVMe SCSI
UFS

Need to support many different use-cases
• Focus on 80%
• Backwards compatibility

Fits block-device Linux model
• Tested across different protocols
• Things to improve (ongoing)

SCSI stabilized on ZBC model (SMR HDDs)
• Good support in Linux
• Good decisions for applications (RW zones)

UFS targets a controlled environment
• Zoned UFS in F2FS for Android Systems

Interest in NVMe diminishing due to complexity
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FDP: Overview
Flexible Data Placement (FDP)
Ratified TP4146 in NVMe
Enables host to provide hint where to place data via virtual handle/pointer
Device changes:
• Places data in super block based on hint rather than choosing its own super block
• Advertises size of super block

What functionality does not change
• Read 
• Write (Optional write handle added)
• Deallocate/TRIM
• Security

Backwards compatibility
• FDP may be enabled/disabled on standard devices
• Applications are not required to understand FDP to 

get benefits
• Applications which understand FDP have increased 
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Tech Pit Stop: I/O Passthru (1/3) - Motivation

NVMe is no longer tied to the Block Device interface
• Multiple command-sets

- NVM, Zoned Namespaces (ZNS), Key-Value (KV), Computational Storage, Subsystem local Memory
• Adoption of non-block semantics
• Even block-friendly command-sets define new ways of interacting

- Zone Append: Nameless write with LBA in completion path
- FDP Write: Write (LBA, Placement ID)
- Copy Command: In-device transfer with no payload

Different priorities in NVMe Ecosystem
• Innovation requires fast adoption and prototyping
• Linux kernel values maintainability above cutting edge. Rightfully so!

We need an interface that allows for NVMe Innovation to be deployed in the kernel
• Alternative to SPDK using the in-kernel I/O Path
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Tech Pit Stop: I/O Passthru (2/3) - Implementation
Char Device

Always available. Not dependent on block

IOCTL io_uring_cmd
Prepare command (80b) 
and send ioctl
• NVME_IOCTL_IO64_CMD
• NVME_IOCTL_IO64_CMD_VEC
• NVME_IOCTL_ADMIN64_CMD

Submission

Completion

Prepare command (72b) 
and send uring-cmd

• NVME_URING_CMD_IO
• NVME_URING_CMD_IO_VEC
• NVME_URING_CMD_ADMIN
• NVME_URING_CMD_ADMIN_VEC

Submission
• Extract cmd from Big SQE

Completion
• Put result into Big CQE

io_uring capabilities
New facility to attach “io_uring capabilities” to any 
underlying command implemented by the command-
provider

• Capabilities: Async dispatch, Completion polling, Fixed buffers, 
Batching

Command provider
• Can be any kernel component that collaborates with io_uring
• Example: NVMe driver, Ublk, Sockets

User Interface
• New opcode: IORING_OP_URING_CMD to go in SQE
• Command is placed inline in SQE

- Regular SQE == 16 bytes; Big SQE == 80 bytes
• SQE->cmd_op contains provider-specific opcode
• Result arrives in CQE

- One result in CQE; Additional result in Big CQE 

io_uring Big SQE/CQE
Double the size of regular 

• SQE: 128 bytes, CQE: 32 bytes

Setup ring with dedicated flags
• IORING_SETUP_SQE128 / IORING_SETUP_CQE32 

Zero-copy for submission / completion command
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Feature Version

Generic char interface: initial support 5.13

Generic char interface: any command set 6.0

Io_uring command, Big SQE, Big CQE 5.19

Uring-passthrough for NVMe 5.19

Efficiency: Fixed-Buffer, Completion polling 6.1

Fine-granular access 6.2

NVMe Cli can use /dev/ngXnY to issue any command

Fio
• New ‘io_uring_cmd’ ioengine

- FDP support
- DIF/DIX support

• t/io_uring support

Liburing
• Big SQE/CQE awareness
• Uring-passthrough tests on /dev/ngXnY

Tooling

Upstream Kernel Architecture
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Tech Pit Stop: I/O Passthru (3/3) - Status
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FDP: Linux Ecosystem
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Cachelib RocksDB

Stable Ongoing Planned

FDP already deployed and being using I/O 
Passthru interface
• Upstream integration in Cachelib
• Storage backed released for RocksDB

SPDK Support
Upstream tooling support
• fio, nvme-cli, xNVMe, QEMU

Ongoing work for block layer support
• Enabling hints for block layer
• Enabling hints for file systems

- Internal for the FS (e.g., metadata, b-tree)
- Applications use hints being passed to user-space

• Trying to re-use existing infrastructure as much 
as possible (details in next slide)
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FDP: Ongoing Block Support
Use existing write hints (v1-v3) Use placement hints (>=V3)

User Interface
• Set using fcntl F_SET_RW_HINT
• Query using fcntl F_GET_RW_HINT
• The interface supports one type of hint (data lifetime) with 6 possible 

values

Kernel
• Stores the hint value in i_write_hint field of file’s inode
• During IO, the hint is propagated down (both direct & buffered I/O)
• https://lore.kernel.org/linux-nvme/20240702102619.164170-1-joshi.k@samsung.com/

i_write_hintinode

fcntl(F_SET_RW_HI
NT, uint64_t *)

RWH_WRITE_LIFE_NOT_SET
RWH_WRITE_LIFE_NONE
RWH_WRITE_LIFE_SHORT
RWH_WRITE_LIFE_MEDIUM
RWH_WRITE_LIFE_LONG
RWH_WRITE_LIFE_EXTREME

i_write_hintinode

bi_write_hintbio

write_hintrequest

Map write_hi
nt to streams

SCSI

Map write_hint t
o placement-id

NVMe

Set / Query write-hints Dispatch write-hints

User Interface
• Set using new fcntl F_SET_RW_HINT_EX
• Query using new fcntl F_GET_RW_HINT_EX
• The interface allows passing multiple types of hints
• TYPE_RW_LIFETIME_HINT with 6 possible values
• TYPE_RW_PLACEMENT_HINT with 128 possible values

Kernel
• Stores hint type and value in i_write_hint field of file’s inode
• One bit (MSB) is used to indicate the hint type
• The inode retains either lifetime hint or placement hint (user decides)
• During I/O, the hint is propagated down (both direct & buffered I/O)
• https://lore.kernel.org/linux-nvme/20240910150200.6589-1-joshi.k@samsung.com/

i_write_hintinode

fcntl(F_SET_RW_HINT_EX
, struct rw_hint_ex*)

__u8 type;
__u64 val;

Set / Query write-hints Dispatch write-hints

i_write_hintinode

bi_write_hintbio

write_hintrequest

Map lifetime-hint 
to streams

SCSI

Map placement-hint to 
placement-id

NVMe

https://lore.kernel.org/linux-nvme/20240702102619.164170-1-joshi.k@samsung.com/
https://lore.kernel.org/linux-nvme/20240910150200.6589-1-joshi.k@samsung.com/
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Take Aways

Data placement has been an unsolved problem in storage for at least the past 10 years
• NAND & Rotational Media
• Several technologies have emerged 
• Moving from full host-based placement to host/device collaboration

End-to-end solutions in an open-ecosystem is key for success
• Need to target different use-cases
• Need to support different vendors
• Need to avoid fragmentation

We have stabilized in 2 models for 2 different media and use-cases
• Zoned Storage

- HDDs (ZBC for SMR): Stabilized through time
- UFS (Zoned UFS): Single File System (F2FS) and controlled environment (Android Mobile Devices)

• FDP
- NVMe SSDs: Flexibility & backwards compatibility for different hyperscale & enterprise use-cases




