Data Placement at Scale
Landscape, Trade-Offs, and Direction

Javier Gonzalez | LPC’24

ﬁ

SAMSUNG THE NEXT CREATION STARTS HERE

Data Placement

® Data placement is an unsolved problem in storage
* Reduce TCO & Improve WAF, Space Amplification, and QoS
» Goal is to group data
- Data placement as a logical concept
- No intention to expose physical layout to host
» Support increased media density (NAND &* rotational media)
- Deal with less reliability
- Provide appealing DWPD

Novel Data Placement technologies are hard to adopt

» Changes required at the interface / protocol level
- Changes to standards are required
- Changes to the open-source host software are required
- Community Industry leadership to make technology mainstream is required

- These changes are hard

The require a clear use-case accepted by the industry
They take time and effort

« HW/SW Co-Design is difficult to implement
- Requires tight vendor / customer collaboration

THE NEXT CREATION STARTS HERE

History: Data Placement Technologies Confidential

® Data Placement is a prevalent problem across storage consumers & Industries
» Impacts: WAF, TCO, predictability (latencies), and overall performance

Several approaches in the past few years account for innovation in this area
« Well explored design space facilitates a good understanding of the trade-offs

_ e

Block Interface (CNS) Streams / Directives Flexible Data Plac. (FDP) Zoned Storage Open-Channel SSDs
Description & Trade-offs Description & Trade-offs Description & Trade-offs Description & Trade-offs Description & Trade-offs
+ Traditional block device « Extension to block device with « Extension to block device with * Departs from block device + Full host-based FTL
* Most innovation in-device backwards compatibility backwards compatibility * No backwards compatibility « Most innovation in host
» Mature host software stack » Use of write hints + Capacity-based placement + LBA-based placement with + Drastic changes to Host SW
« WAF ~1: No assurances » DSM deallocation mechanism without seq. write requirement strict seq. write requirement « WAF ~1: Assured
Stat * Minor changes to Host SW + Use of write tags » Explicit host deallocation &
atus + WAF ~1: Initialize & trust + DSM deallocation mechanism state machine management Status
* Commonplace for storage S « Minor changes to Host SW + Major changes to Host SW o Nt sk
devices « WAF ~1: Iterative query/check * WAF ~1: assured .

et . Dropped by the industry
 Little industry traction Status Status

* Adopted in HDDs (SMR)
e Traction in UFS
¢ Little traction in NVMe

» Customer-driver technology
» Blooming adoption & Eco

SCSI: 2010’s SCSI: 2018

1970’s NVMe: 2017 NVMe: 2023 . NVMe: 2021 . NVMe: 2015

THE NEXT CREATION STARTS HERE

WAF: One Proxy-Metric to Rule Them All Confidential

® The goal is to compare Data Placement (DP) technologies across these 4 metrics
 WAF (+Space Amp), Performance (BW & latency), Device Utilization, and Engineering Effort
« TCO is a function of all these metrics

Technology Viewpoint Experimental Space WAF is a critical metric to determine
. .) FDP & ZNS used as examples device utilization in real deployments
® How is each customer dealing with the A 25 war
trade-off across these metrics? o / : ,
oNS_ / ' 4
How much can we push device - / | 1B ZNS WAF can exceed ON
utilization at acceptable metrics? ' FREE. ,/ /l Lo S Gap depending on Host
. / ‘ implementation
 Is 80% of the benefit enough? Other %? 47 / /
/ ' 3
])) L 5.;5“/..{""""’"""""" """"""" foe . g
Business Viewpoint e B2 7 gz’é’v‘&i?//umi‘mﬁm'i A
. D - / ' arget " i %
® Which DP tech. allows customers to 12 o0 FE |- FDP WAF has an upper
t thei . t t the | t _ 7 ;) z bound at CNS WAF due
mee eir requirements a e lowes 1.1 = - i /o e to the internal FTL
TCO? /// WAF GAIN i ‘/
® What is the trade-off between the initial ° T T e T | Do v
investment and the expected benefits . . | 3;;!;;0"
| UTILIZATIONGAIN ‘
on a full deployment? , , ,
50% 2% 100%

THE NEXT CREATION STARTS HERE

Data Placement Today: Technology Overview Confidential

m Different technologies address the same issue for different use-cases and protocols
« Zoned Storage
- T10/13 stabilized in Zoned Storage (i.e., ZAC/ZBC) for SMR HDDs
- JEDEC is aligning in Zoned UFS for UFS. Leveraging a lot of the work in ZBC-2
» Write Hints

- NVMe is aligning in Flexible Data Placement (FDP) for SSDs

Write Hints Zoned Storage
o Write Model o Write Model
» Backwards compatibility and incremental changes * No backwards combability. Changes are all / nothing
« Target generic workloads — with & without SW changes * LBA-based placement with strict sequential write and no-
- Capacity-based placement through write tags with support overwrite constraints. ZAC/ZBC allow RW zones
for random writes, overwrites, and default » Explicit host deallocation and state machine management

* Mechanism to deallocate and avoid device-side GC

WAF Guarantees

» No explicit guarantee by design - WAF improves as a
function of the engineering effort in applications

® WAF Guarantees
» Best device WAF: Device WAF ~1 is guaranteed

* End-to-End WAF varies as a function of the engineering effort

L e o T i oroved ® Suitability
e e e e " Fully sequential Apps / FSs with in-built GC and data objects
- SU“al?"'t_y o _ _ that can be directly mapped zones (e.g., ZonedUFS in F2FS)
0 Aprz“ga?onﬁ ‘f[V}th '[Ebg-'# dal;‘? Sfparat'%n ’Ee.gt-’ data / « High engineering effort for 100% of benefit. Especially true
MSECELED [0 €, Chik, OBl SIS, REl SR for applications with slight unalignment (e.g., metadata
* Low engineering effort for first 80% benefit overwrites)

THE NEXT CREATION STARTS HERE

Confidential

Data Placement Today: Industry Alignment

Write Hints

Zoned Storage

¥

¥
<

Need to support many different use-cases # SCSI stabilized on ZBC model (SMR HDDs)
» Focus on 80% » Good support in Linux
+ Backwards compatibility + Good decisions for applications (RW zones)
® Fits block-device Linux model ® UFS targets a controlled environment
 Tested across different protocols + Zoned UFS in F2FS for Android Systems
« Things to improve (ongoing) # Interest in NVMe diminishing due to complexity

THE NEXT CREATION STARTS HERE

FDP: Overview Confidential

® Flexible Data Placement (FDP)
o Ratified TP4146 in NVMe
® Enables host to provide hint where to place data via virtual handle/pointer

® Device changes:
* Places data in super block based on hint rather than choosing its own super block

» Advertises size of super block _

® What functionality does not change

* Read
» Write (Optional write handle added)

. Deallocate/TRIM q W

Reclaim Unit Handle 1

» Security o~
=g mgm eclaim eclaim eclaim eclaim
® Backwards compatibility ot it 1 "t
- FDP may be enabled/disabled on standard devices Fecam R\] Fecam
» Applications are not required to understand FDP to Ream Ream Redam ||| | [[Redam
get benefits
» Applications which understand FDP have increased feclaim y Recam || [Ly Redam | Fecam
f. Reclaim Reclaim Reclaim Reclaim
benefits
Group 0 roup 1/ Group 2 Group P-1

Endurance Group

THE NEXT CREATION STARTS HERE

Tech Pit Stop: I/O Passthru (1/3) - Motivation Confidential

NVMe is no longer tied to the Block Device interface
* Multiple command-sets
- NVM, Zoned Namespaces (ZNS), Key-Value (KV), Computational Storage, Subsystem local Memory
» Adoption of non-block semantics
» Even block-friendly command-sets define new ways of interacting
- Zone Append: Nameless write with LBA in completion path
- FDP Write: Write (LBA, Placement ID)
- Copy Command: In-device transfer with no payload

o Different priorities in NVMe Ecosystem
* Innovation requires fast adoption and prototyping
 Linux kernel values maintainability above cutting edge. Rightfully so!

We need an interface that allows for NVMe Innovation to be deployed in the kernel
+ Alternative to SPDK using the in-kernel I/O Path

THE NEXT CREATION STARTS HERE

Tech Pit Stop: I/0O Passthru (2/3) - Implementation

Char Device
Always available. Not dependent on block

Generic Model

/dev/nvmeOnl /dev/ngbnl 0123456789ABCDEFO000 SAMSUNG NVMe SSD
/dev/nvmelnl /dev/nglnl PHAL11730018400AGN INTEL SSDPF21Q40

static const struct file_operations nvme_ns_chr_fops = {
.owner THIS_MODULE,
.open nvme_ns_chr_open,
.release nvme_ns_chr_release,
.unlocked_ioctl nvme_ns_chr_ioctl,
.compat_ioctl compat_ptr_ioctl,
.uring_cmd nvme_ns_chr_uring_cmd,
.uring_cmd_iopoll = nvme_ns_chr_uring_cmd_iopoll,

IOCTL

® Prepare command (80b)
and send ioctl

io_uring_cmd

® Prepare command (72b)
and send uring-cmd

NVME_IOCTL_|064_CMD + NVME_URING_CMD_IO
NVME_IOCTL_|064_CMD_VEC « NVME_URING_CMD_IO_VEC
NVME_IOCTL_ADMIN64_CMD « NVME URING CMD ADMIN

Submission

if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
return - -

Completion

if (put_user(cmd.result, &ucmd->result))

Submission
« Extract cmd from Big SQE

Completion
* Putresultinto Big CQE

return -

+ NVME_URING_CMD_ADMIN_VEC

io_uring capabilities

New facility to attach “io_uring capabilities” to any
underlying command implemented by the command-
provider

» Capabilities: Async dispatch, Completion polling, Fixed buffers,
Batching
Command provider
» Can be any kernel component that collaborates with io_uring
» Example: NVMe driver, Ublk, Sockets

User Interface
* New opcode: IORING_OP_URING_CMD to go in SQE
» Command is placed inline in SQE
- Regular SQE == 16 bytes; Big SQE == 80 bytes
+ SQE->cmd_op contains provider-specific opcode

* Result arrives in CQE
- One result in CQE; Additional result in Big CQE

io_uring Big SQE/CQE
Double the size of regular
+ SQE: 128 bytes, CQE: 32 bytes

m Setup ring with dedicated flags
+ IORING_SETUP_SQE128 / IORING_SETUP_CQE32

u Zero-copy for submission / completion command

THE NEXT CREATION STAR

Confidential

m

m

Tech Pit Stop: I/O Passthru (3/3) - Status Confidential

- DIF/DIX support
» t/io_uring support

Upstream Kernel Architecture
Generic char interface: initial support 513
Generic char interface: any command set 6.0
lo_uring command, Big SQE, Big CQE 5.19
Uring-passthrough for NVMe 5.19
Efficiency: Fixed-Buffer, Completion polling 6.1 :
Fine-granular access 6.2 E % E
Tooling 2 g
® NVMe Cli can use /dev/ingXnY to issue any command Fé E L% i
" Fio S T
* New ‘io_uring_cmd’ ioengine i E i
- FDP support ! !

® Liburing
+ Big SQE/CQE awareness
» Uring-passthrough tests on /dev/ngXnY

THE NEXT CREATION STARTS HERE

Confidentialr

FDP: Linux Ecosystem

® FDP already deployed and being using I/O
Passthru interface
» Upstream integration in Cachelib
» Storage backed released for RocksDB

SPDK Support

Upstream tooling support
* fio, nvme-cli, xNVMe, QEMU

Ongoing work for block layer support
« Enabling hints for block layer
» Enabling hints for file systems
- Internal for the FS (e.g., metadata, b-tree)
- Applications use hints being passed to user-space

» Trying to re-use existing infrastructure as much
as possible (details in next slide)

nvme-cli

User Space

Kernel Space

I Planned

M stable M Ongoing

THE NEXT CREATION STARTS HERE

Confidential

FDP: Ongoing Block Support

Use existing write hints (v1-v3)
User Interface

» Set using fentl F_SET_RW_HINT

* Query using fcntl F_GET_RW_HINT

* The interface supports one type of hint (data lifetime) with 6 possible
values

u Kernel
» Stores the hint value in i_write_hint field of file’s inode

» During 10, the hint is propagated down (both direct & buffered 1/0)
https://lore.kernel.org/linux-nvme/20240702102619.164170-1-joshi.k@samsung.com/

Set / Query write-hints Dispatch write-hints

fentl(F_SET_RW_HI
v NT, uint64_t *)

-

-7
-

RWH._WRITE LIFE NOT SET
RWH_WRITE LIFE NONE
RWH._WRITE LIFE SHORT
RWH_WRITE_LIFE MEDIUM
RWH_WRITE_LIFE LONG
RWH_WRITE LIFE EXTREME

bi_write_hint

SCslI NVMe

Map write_hint t
o placement-id

Map write_hi
nt to streams

Use placement hints (>=V3)

User Interface
» Set using new fcntl F_SET_RW_HINT_EX
* Query using new fcntl F_GET_RW_HINT_EX
» The interface allows passing multiple types of hints
 TYPE_RW_LIFETIME_HINT with 6 possible values
* TYPE_RW_PLACEMENT_HINT with 128 possible values

u Kernel
» Stores hint type and value in i_write_hint field of file’s inode
* One bit (MSB) is used to indicate the hint type
* The inode retains either lifetime hint or placement hint (user decides)

» During I/O, the hint is propagated down (both direct & buffered 1/0)
https://lore.kernel.org/linux-nvme/20240910150200.6589-1-joshi.k@samsung.com/

Set / Query write-hints Dispatch write-hints

fentl(F_SET_RW_HINT_EX 7
, struct rw_hint_ex*)

~<h

~.

_u8 type;
__ub4 val

l bi_write_hint

NVMe

Map lifetime-hint Map placement-hint to
to streams placement-id

THE NEXT CREATION STARTS HERE

https://lore.kernel.org/linux-nvme/20240702102619.164170-1-joshi.k@samsung.com/
https://lore.kernel.org/linux-nvme/20240910150200.6589-1-joshi.k@samsung.com/

Take Aways Confidential

Data placement has been an unsolved problem in storage for at least the past 10 years
 NAND & Rotational Media
» Several technologies have emerged
» Moving from full host-based placement to host/device collaboration

End-to-end solutions in an open-ecosystem is key for success
* Need to target different use-cases
» Need to support different vendors
» Need to avoid fragmentation

We have stabilized in 2 models for 2 different media and use-cases

» Zoned Storage

- HDDs (ZBC for SMR): Stabilized through time

- UFS (Zoned UFS): Single File System (F2FS) and controlled environment (Android Mobile Devices)
- FDP

- NVMe SSDs: Flexibility & backwards compatibility for different hyperscale & enterprise use-cases

THE NEXT CREATION STARTS HERE

THE NEXT CREATION STARTS HERE

Placing memory at the forefront of future innovation and creative IT life

