
Data Placement at Scale 
Landscape, Trade-Offs, and Direction

Javier Gonzalez | LPC’24



1

Data Placement

Data placement is an unsolved problem in storage
• Reduce TCO & Improve WAF, Space Amplification, and QoS
• Goal is to group data

- Data placement as a logical concept
- No intention to expose physical layout to host

• Support increased media density (NAND &* rotational media)
- Deal with less reliability
- Provide appealing DWPD

Novel Data Placement technologies are hard to adopt
• Changes required at the interface / protocol level

- Changes to standards are required
- Changes to the open-source host software are required
- Community Industry leadership to make technology mainstream is required
- These changes are hard

• The require a clear use-case accepted by the industry
• They take time and effort

• HW/SW Co-Design is difficult to implement
- Requires tight vendor / customer collaboration

Standards Community

Open-Source

Open-Ecosystem



2

History: Data Placement Technologies

Data Placement is a prevalent problem across storage consumers & Industries
• Impacts: WAF, TCO, predictability (latencies), and overall performance
Several approaches in the past few years account for innovation in this area
• Well explored design space facilitates a good understanding of the trade-offs 

Block Interface (CNS) Streams / Directives Flexible Data Plac. (FDP) Zoned Storage Open-Channel SSDs
Description & Trade-offs Description & Trade-offs Description & Trade-offs Description & Trade-offs Description & Trade-offs
• Traditional block device
• Most innovation in-device
• Mature host software stack
• WAF ~1: No assurances

• Extension to block device with 
backwards compatibility

• Use of write hints
• DSM deallocation mechanism
• Minor changes to Host SW
• WAF ~1: Initialize & trust

• Extension to block device with 
backwards compatibility

• Capacity-based placement 
without seq. write requirement

• Use of write tags
• DSM deallocation mechanism
• Minor changes to Host SW
• WAF ~1: Iterative query/check

• Departs from block device
• No backwards compatibility
• LBA-based placement with 

strict seq. write requirement
• Explicit host deallocation & 

state machine management
• Major changes to Host SW
• WAF ~1: assured

• Full host-based FTL
• Most innovation in host
• Drastic changes to Host SW
• WAF ~1: Assured

Status

Status

Status Status

Status
• Commonplace for storage 

devices
• Not standardized
• Dropped by the industry

• Little industry traction

• Customer-driver technology
• Blooming adoption & Eco

• Adopted in HDDs (SMR)
• Traction in UFS
• Little traction in NVMe

1970’s
SCSI: 2010’s
NVMe: 2017 NVMe: 2023

SCSI: 2018
NVMe: 2021 NVMe: 2015



3

WAF: One Proxy-Metric to Rule Them All

The goal is to compare Data Placement (DP) technologies across these 4 metrics
• WAF (+Space Amp), Performance (BW & latency), Device Utilization, and Engineering Effort
• TCO is a function of all these metrics

FD
P 

W
AF

 G
AP

1.0

1.1

1.2

1.3

1.4

1.5

1.6

50% 100%

ZNS
Device WAF

CNS
Tolerable E2E WAF

CNS

FDP (iteration 1) 

FDP iteration 1
E2E WAF Target

FDP iteration 1
E2E WAF / Utilization 
Target

?%

FDP (iteration 2)

WAF GAIN

UTILIZATION GAIN

ZNS
E2E WAF

E2E WAF

Device
Utilization

ZN
S 

W
AF

 G
AP

Technology Viewpoint

Business Viewpoint

Experimental Space
How is each customer dealing with the 
trade-off across these metrics?
How much can we push device 
utilization at acceptable metrics?
Is 80% of the benefit enough? Other %?

Which DP tech. allows customers to 
meet their requirements at the lowest 
TCO?
What is the trade-off between the initial 
investment and the expected benefits 
on a full deployment?

ZNS WAF can exceed CN
S Gap depending on Host 
implementation

FDP WAF has an upper 
bound at CNS WAF due 
to the internal FTL

WAF is a critical metric to determine 
device utilization in real deploymentsFDP & ZNS used as examples



4

Data Placement Today: Technology Overview

Different technologies address the same issue for different use-cases and protocols
• Zoned Storage

- T10/13 stabilized in Zoned Storage (i.e., ZAC/ZBC) for SMR HDDs
- JEDEC is aligning in Zoned UFS for UFS. Leveraging a lot of the work in ZBC-2

• Write Hints
- NVMe is aligning in Flexible Data Placement (FDP) for SSDs

Zoned StorageWrite Hints
Write Model
• Backwards compatibility and incremental changes
• Target generic workloads – with & without SW changes 
• Capacity-based placement through write tags with support 

for random writes, overwrites, and default
• Mechanism to deallocate and avoid device-side GC WAF Guarantees

• Best device WAF: Device WAF ~1 is guaranteed
• End-to-End WAF varies as a function of the engineering effort

Suitability
• Applications with in-built data separation (e.g., data / 

metadata, hot / cold, diff. object sizes, data streams
• Low engineering effort for first 80% benefit

Write Model
• No backwards combability. Changes are all / nothing
• LBA-based placement with strict sequential write and no-

overwrite constraints. ZAC/ZBC allow RW zones
• Explicit host deallocation and state machine management

WAF Guarantees
• No explicit guarantee by design - WAF improves as a 

function of the engineering effort in applications
• Variable through device lifetime as host support is improved Suitability

• Fully sequential Apps / FSs with in-built GC and data objects 
that can be directly mapped zones (e.g., ZonedUFS in F2FS)

• High engineering effort for 100% of benefit. Especially true 
for applications with slight unalignment (e.g., metadata 
overwrites)



5

Data Placement Today: Industry Alignment

Write Hints Zoned Storage

NVMe SCSI
UFS

Need to support many different use-cases
• Focus on 80%
• Backwards compatibility

Fits block-device Linux model
• Tested across different protocols
• Things to improve (ongoing)

SCSI stabilized on ZBC model (SMR HDDs)
• Good support in Linux
• Good decisions for applications (RW zones)

UFS targets a controlled environment
• Zoned UFS in F2FS for Android Systems

Interest in NVMe diminishing due to complexity



6

FDP: Overview
Flexible Data Placement (FDP)
Ratified TP4146 in NVMe
Enables host to provide hint where to place data via virtual handle/pointer
Device changes:
• Places data in super block based on hint rather than choosing its own super block
• Advertises size of super block

What functionality does not change
• Read 
• Write (Optional write handle added)
• Deallocate/TRIM
• Security

Backwards compatibility
• FDP may be enabled/disabled on standard devices
• Applications are not required to understand FDP to 

get benefits
• Applications which understand FDP have increased 

benefits Reclaim
Group 1

Reclaim
Unit

Reclaim
Unit

...

Reclaim
Group 0

Reclaim
Unit

Reclaim
Unit

...

Reclaim
Group 2

Reclaim
Unit

Reclaim
Unit

Reclaim
Unit

...

Reclaim
Group P-1

Reclaim
Unit

Reclaim
Unit

Reclaim
Unit

...

...

Reclaim
Unit

Reclaim
Unit

Reclaim
Unit

Reclaim
Unit

Reclaim 
Unit

Reclaim
Unit

Reclaim
Group 1

Reclaim
Unit

Reclaim
Unit

...

Reclaim
Group 0

Reclaim
Unit

Reclaim
Unit

...

Reclaim
Group 2

Reclaim
Unit

Reclaim
Unit

Reclaim
Unit

...

Reclaim
Group P-1

Reclaim
Unit

Reclaim
Unit

Reclaim
Unit

...

...

Reclaim
Unit

Reclaim
Unit

Reclaim
Unit

Reclaim
Unit

Reclaim 
Unit

Reclaim
Unit

Reclaim Unit Handle 0

...

Reclaim Unit Handle 1

 Reclaim Unit Handle N-1

Reclaim
Unit

Reclaim
Unit

...

Reclaim
Unit

Reclaim
Unit

...

Reclaim
Unit

Reclaim
Unit

Reclaim
Unit

...

Reclaim
Unit

Reclaim
Unit

Reclaim
Unit

...

...

Reclaim
Unit

Reclaim
Unit

Reclaim
Unit

Reclaim
Unit

Reclaim 
Unit

Reclaim
Unit

Endurance Group

Reclaim
Group 1

Reclaim
Unit

Reclaim
Unit

...

Reclaim
Group 0

Reclaim
Unit

Reclaim
Unit

...

Reclaim
Group 2

Reclaim
Unit

Reclaim
Unit

Reclaim
Unit

...

Reclaim
Group P-1

Reclaim
Unit

Reclaim
Unit

Reclaim
Unit

...

...

Reclaim
Unit

Reclaim
Unit

Reclaim
Unit

Reclaim
Unit

Reclaim 
Unit

Reclaim
Unit

Reclaim Unit Handle 0

...

Reclaim Unit Handle 1

 Reclaim Unit Handle N-1



7

Tech Pit Stop: I/O Passthru (1/3) - Motivation

NVMe is no longer tied to the Block Device interface
• Multiple command-sets

- NVM, Zoned Namespaces (ZNS), Key-Value (KV), Computational Storage, Subsystem local Memory
• Adoption of non-block semantics
• Even block-friendly command-sets define new ways of interacting

- Zone Append: Nameless write with LBA in completion path
- FDP Write: Write (LBA, Placement ID)
- Copy Command: In-device transfer with no payload

Different priorities in NVMe Ecosystem
• Innovation requires fast adoption and prototyping
• Linux kernel values maintainability above cutting edge. Rightfully so!

We need an interface that allows for NVMe Innovation to be deployed in the kernel
• Alternative to SPDK using the in-kernel I/O Path



8

Tech Pit Stop: I/O Passthru (2/3) - Implementation
Char Device

Always available. Not dependent on block

IOCTL io_uring_cmd
Prepare command (80b) 
and send ioctl
• NVME_IOCTL_IO64_CMD
• NVME_IOCTL_IO64_CMD_VEC
• NVME_IOCTL_ADMIN64_CMD

Submission

Completion

Prepare command (72b) 
and send uring-cmd

• NVME_URING_CMD_IO
• NVME_URING_CMD_IO_VEC
• NVME_URING_CMD_ADMIN
• NVME_URING_CMD_ADMIN_VEC

Submission
• Extract cmd from Big SQE

Completion
• Put result into Big CQE

io_uring capabilities
New facility to attach “io_uring capabilities” to any 
underlying command implemented by the command-
provider

• Capabilities: Async dispatch, Completion polling, Fixed buffers, 
Batching

Command provider
• Can be any kernel component that collaborates with io_uring
• Example: NVMe driver, Ublk, Sockets

User Interface
• New opcode: IORING_OP_URING_CMD to go in SQE
• Command is placed inline in SQE

- Regular SQE == 16 bytes; Big SQE == 80 bytes
• SQE->cmd_op contains provider-specific opcode
• Result arrives in CQE

- One result in CQE; Additional result in Big CQE 

io_uring Big SQE/CQE
Double the size of regular 

• SQE: 128 bytes, CQE: 32 bytes

Setup ring with dedicated flags
• IORING_SETUP_SQE128 / IORING_SETUP_CQE32 

Zero-copy for submission / completion command



9

Feature Version

Generic char interface: initial support 5.13

Generic char interface: any command set 6.0

Io_uring command, Big SQE, Big CQE 5.19

Uring-passthrough for NVMe 5.19

Efficiency: Fixed-Buffer, Completion polling 6.1

Fine-granular access 6.2

NVMe Cli can use /dev/ngXnY to issue any command

Fio
• New ‘io_uring_cmd’ ioengine

- FDP support
- DIF/DIX support

• t/io_uring support

Liburing
• Big SQE/CQE awareness
• Uring-passthrough tests on /dev/ngXnY

Tooling

Upstream Kernel Architecture

Ke
rn

el 
Sp

ac
e

Us
er

 S
pa

ce

I/O Interface (e.g., io_uring, psync)

Block Layer
Device Mappers

File
Abstraction

Raw Block
Abstraction

Raw Char
Abstraction

In-Kernel I/O Path

NVMe Native Applications

Storage Driver NVMeUFSSCSI

File Systems

SPDK

NVMeUFSSATA/SAS

Ke
rn

el-
By

pa
ss

 I/
O 

Pa
th

NVMe Char SPDK

Tools

nvme-cli

fio

Available HW

Tech Pit Stop: I/O Passthru (3/3) - Status



10

FDP: Linux Ecosystem

Ke
rn

el 
Sp

ac
e

Us
er

 S
pa

ce

I/O Interface (e.g., io_uring, psync)

Block Layer
Device Mappers

File
Abstraction

Raw Block
Abstraction

Raw Char
Abstraction

In-Kernel I/O Path

FDP Applications

NVMe Native Applications

Storage Driver NVMeUFSSCSI

W
rit

e 
Hi

nt
s

File Systems

SPDK

NVMeUFSSATA/SAS

Ke
rn

el-
By

pa
ss

 I/
O 

Pa
th

NVMe Char SPDK

Tools

nvme-cli

fio

Available HW

Cachelib RocksDB

Stable Ongoing Planned

FDP already deployed and being using I/O 
Passthru interface
• Upstream integration in Cachelib
• Storage backed released for RocksDB

SPDK Support
Upstream tooling support
• fio, nvme-cli, xNVMe, QEMU

Ongoing work for block layer support
• Enabling hints for block layer
• Enabling hints for file systems

- Internal for the FS (e.g., metadata, b-tree)
- Applications use hints being passed to user-space

• Trying to re-use existing infrastructure as much 
as possible (details in next slide)



11

FDP: Ongoing Block Support
Use existing write hints (v1-v3) Use placement hints (>=V3)

User Interface
• Set using fcntl F_SET_RW_HINT
• Query using fcntl F_GET_RW_HINT
• The interface supports one type of hint (data lifetime) with 6 possible 

values

Kernel
• Stores the hint value in i_write_hint field of file’s inode
• During IO, the hint is propagated down (both direct & buffered I/O)
• https://lore.kernel.org/linux-nvme/20240702102619.164170-1-joshi.k@samsung.com/

i_write_hintinode

fcntl(F_SET_RW_HI
NT, uint64_t *)

RWH_WRITE_LIFE_NOT_SET
RWH_WRITE_LIFE_NONE
RWH_WRITE_LIFE_SHORT
RWH_WRITE_LIFE_MEDIUM
RWH_WRITE_LIFE_LONG
RWH_WRITE_LIFE_EXTREME

i_write_hintinode

bi_write_hintbio

write_hintrequest

Map write_hi
nt to streams

SCSI

Map write_hint t
o placement-id

NVMe

Set / Query write-hints Dispatch write-hints

User Interface
• Set using new fcntl F_SET_RW_HINT_EX
• Query using new fcntl F_GET_RW_HINT_EX
• The interface allows passing multiple types of hints
• TYPE_RW_LIFETIME_HINT with 6 possible values
• TYPE_RW_PLACEMENT_HINT with 128 possible values

Kernel
• Stores hint type and value in i_write_hint field of file’s inode
• One bit (MSB) is used to indicate the hint type
• The inode retains either lifetime hint or placement hint (user decides)
• During I/O, the hint is propagated down (both direct & buffered I/O)
• https://lore.kernel.org/linux-nvme/20240910150200.6589-1-joshi.k@samsung.com/

i_write_hintinode

fcntl(F_SET_RW_HINT_EX
, struct rw_hint_ex*)

__u8 type;
__u64 val;

Set / Query write-hints Dispatch write-hints

i_write_hintinode

bi_write_hintbio

write_hintrequest

Map lifetime-hint 
to streams

SCSI

Map placement-hint to 
placement-id

NVMe

https://lore.kernel.org/linux-nvme/20240702102619.164170-1-joshi.k@samsung.com/
https://lore.kernel.org/linux-nvme/20240910150200.6589-1-joshi.k@samsung.com/


12

Take Aways

Data placement has been an unsolved problem in storage for at least the past 10 years
• NAND & Rotational Media
• Several technologies have emerged 
• Moving from full host-based placement to host/device collaboration

End-to-end solutions in an open-ecosystem is key for success
• Need to target different use-cases
• Need to support different vendors
• Need to avoid fragmentation

We have stabilized in 2 models for 2 different media and use-cases
• Zoned Storage

- HDDs (ZBC for SMR): Stabilized through time
- UFS (Zoned UFS): Single File System (F2FS) and controlled environment (Android Mobile Devices)

• FDP
- NVMe SSDs: Flexibility & backwards compatibility for different hyperscale & enterprise use-cases




