
fw_devlink: Device dependency tracking
What’s new, leveraging it, and next steps

Saravana Kannan (Google)

Introduction

Devices in a typical SoC

CPU GPU Disp Video
Codec

I2C PMIC
1

MM
Clocks Camera

USB General
Clocks

PMIC
2

IOMMU
1

Flash DSP DDR IOMMU
2

Device dependencies
(simplified)

CPU GPU Disp Video
Codec

I2C PMIC
1

MM
Clocks Camera

USB General
Clocks

PMIC
2

IOMMU
1

Flash DSP DDR IOMM
2

A B means A depends on resources provided by B

Device tree example

soc: soc@0 {
compatible = "simple-bus";
interrupt-parent = <&gic>;

cmu_misc: clock-controller@10010000 {
compatible = "google,gs101-cmu-misc";
clocks = <&cmu_top CMU_MISC_BUS>,

 <&cmu_top CMU_MISC_SSS>;
}

gic: interrupt-controller@10400000 {
compatible = "arm,gic-v3";
#interrupt-cells = <4>;
interrupt-controller;
interrupts = <GIC_PPI 9 LEVEL_HIGH 0>;

}

ufs_0: ufs@14700000 {
compatible = "google,gs101-ufs";
interrupts = <GIC_SPI 532 LEVEL_HIGH 0>;
clocks = <&cmu_hsi2 HSI2_UFS_EMBD_I_ACLK>;
pinctrl-0 = <&ufs_rst_n &ufs_refclk_out>;
phys = <&ufs_0_phy>;

};

ufs_0_phy: phy@14704000 {
compatible = "google,gs101-ufs-phy";
clocks = <&ext_24_5m>;

};

usi1: usi@109000c0 {
compatible = "google,gs101-usi";
clocks = <&cmu_peric0 TOP0_PCLK_0>;
hsi2c_1: i2c@10900000 {

compatible = "google,gs101-hsi2c";
clocks = <&cmu_misc TOP0_IPCLK_0>;
interrupts = <GIC_SPI 6 LEVEL_HIGH 0>;
pinctrl-0 = <&hsi2c1_bus>;

};
}

watchdog_cl0: watchdog@10060000 {
compatible = "google,gs101-wdt";
clocks = <&cmu_misc MISC_WDT_CLUSTER0_PCLK>;
interrupts = <GIC_SPI 765 LEVEL_HIGH 0>;

};
}

fw_devlink: Overview

० Parses firmware to determine dependencies.

० Doesn’t depend on drivers for correctness (needs to work for a fully modular kernel).

० Currently supports DT (33 different properties).

० Creates fwnode links to track consumer-supplier relationship between DT nodes.

० fwnode links are converted into device links when the consumer and supplier struct
devices are created from the DT nodes.

What’s new(ish)?

No more initcall chicken

० Your driver’s initcall level is completely irrelevant when it comes to ensuring ordering
with your suppliers.

० fw_devlink guarantees your suppliers will probe before your device.

० Don’t need any special handling for optional supplier.

० If your supplier doesn’t have a driver, fw_devlink will still allow your device to probe after
deferred probe timeout expires.

Smarter deferred probe timeout

० deferred_probe_timeout will now auto extend whenever a new driver is registered.

० This is true even when modules register drivers.

० So, as long as all the modules in the system are loaded early during boot, everything will
work automatically if deferred_probe_timeout is set.

० Example with 10s deferred_probe_timeout:

late_initcallsKernel intcallsBoot up

Timer start

Timer restart

No Timer restart

Driver module A

10 second timer

10 second timer

Driver module B

Time

Better functionality after timeout

० Smarter about relaxing (not blocking on) supplier dependencies after timeout expires.

० After timeout, if device probe retry order happens to be D, C, B and A:

A B C D

Dependency info:

D C B A

Deferred probe list order:

B C D A

With fw_devlink:

D C B A

Without fw_devlink:

Consumer pointing to mandatory supplier.

Consumer pointing to optional supplier.

No driver available for this device.

Device with a matching (but not probed) driver.

Probes with full functionality

Probes with limited functionality

Fails to probe

Runtime PM enforcement

० fw_devlink=rpm is the default mode.

० Enforces runtime PM state between consumers and suppliers.

० Resuming a consumer automatically resumes the supplier.

० Runtime PM stability should be a lot easier to achieve.

Reliable async probing

० Parallelized async probing is dependable/stable now for most boards/systems. Give it a
shot

० driver_async_probe=* will now enable async probing by default for all the drivers.

० driver_async_probe=*,drvA,drvB,drvC will enable async for all drivers except
drivers A, B and C.

० To avoid character limit of driver_async_probe, you can also use
module.async_probe=1 and drvA-module.async_probe=0 for modules.

Synchronous probing (~900ms)

Asynchronous probing (~450ms)

Reliable parallel module loading

० Even better than async probing is actual parallel module loading.

० Needs userspace updates to load multiple modules in parallel.

० For example, Android 13 and later will load modules in parallel if you set
androidboot.load_modules_parallel=1 in the kernel command line.

० Do other userspace module loaders already support this? If not, might want to add
support for this.

Asynchronous probing (~450ms)

Parallel module loading (~250ms)

Reliable async suspend/resume

० Parallelized async suspend/resume is dependable/stable now. Give it a shot

० No command line option for this, but you can run this to enable it after boot to go full
async:

find /sys/devices/ -name async | while read -r filename; do echo
enabled > "$filename"; done

० Very stable on downstream Pixel 6 with no additional driver fixes necessary.

० See also: My other talk on why doing it for every device might not be the most optimal
configuration.

sync_state(): Safe release of unused resources

० Bootloader might leave a resource on (say, a power domain) before jumping to kernel.

० It’s safe to turn off the resource only after all the consumers (say, USB and display) have
probed successfully.

० How do you know when that is? Don’t reinvent the wheel.

० Drivers get a .sync_state(dev) callback when all the consumers of a device have
probed.

० /sys/devices/.../state_synced is present if your device has a sync_state().

० 1 means it has been called. 0 means it has not been called.

० If you want to globally timeout waiting for consumers, set fw_devlink.sync_state to
timeout. Default is strict which waits forever. See also:
CONFIG_FW_DEVLINK_SYNC_STATE_TIMEOUT

० If you want to use strict but force sync_state() for one supplier, write 1 to the
supplier’s /sys/devices/.../state_synced.

Dependency info in sysfs

० /sys/class/devlink provides a lot of details about device dependencies.

० One folder per device link. Folder name format: <supplier>--<consumer>

० Check out Documentation for all the details.

० Each /sys/devices/ has supplier:* and consumer:* symlinks to these device link
folders.

० Very handy if you want to decide which drivers to modularize first, to upstream first, etc.

Effectively leveraging fw_devlink and device links

० All of this dependency tracking and all the benefits go away if you don’t use the
device-driver model.

० Don’t directly parse a DT node and start providing services/APIs/resources.

० Don’t use any variant of the OF_DECLARE macros like CLK_OF_DECLARE,
IRQCHIP_DECLARE or TIMER_OF_DECLARE.

० The only valid users of these are the sched timer/clock and the root IRQ chip.

० Even if your driver is simple now, it’ll inevitably cause issues in the future.

० Plenty of examples, but I don’t want to shame anyone here.

० Please create a device out the DT node/fwnode and probe it with your driver.

Follow the device-driver model

० If your framework/driver creates a new struct device from a struct
device_node, the device’s .fwnode field must be set using device_set_node().
Note: For now, do this only for “bus” devices.

० Create only one struct device from a struct device_node.

० If one fwnode / struct device_node has multiple devices, fw_devlink cannot
determine which device a consumer depends on.

० If a DT node has multiple features, use one device that registers with multiple
frameworks instead of creating multiple devices from one DT node. For example, a single
device/driver can register with both the clocks and power domain frameworks.

० If features are clearly separate hardware blocks, represent them as subnodes in the
device tree so that each struct device has its own struct device_node.

० This approach improves dependency tracking and resource management.

Setting fwnode for devices

० Each struct device must belong to a struct bus or struct class.

० Think of a bus as representing a communication protocol. Eg: I2C, USB, PCIE, platform
(memory mapped IO).

० Devices within a bus can have distinct functions and are probed by device-specific
drivers.

० A class is a logical grouping of devices with similar functionality. Eg: GPUs, ethernet
devices, LEDs, regulators, and RTCs.

० Devices in a class implement class-specific operations and are added (not probed) by
drivers.

० Framework devs: Don’t use a bus in your framework if you don’t intend to probe the
devices.

○ Too many examples of this.

○ This (rightfully) confuses fw_devlink and it’ll wait indefinitely for your devices to
probe.

To bus or not to bus? That is the question.

० fw_devlink can detect cyclic dependencies in device tree.

० fw_devlink doesn’t enforce ordering between devices in a cycle.

० Less ordering enforcement leads to less determinism and stability.

० A, B, C, D and E are part of a cycle and aren’t ordered between them.

० X and Y are still ordered with respect to A and E respectively.

० Probe/suspend/resume/runtime PM cycles can’t exist by definition.

० post-init-providers property in DT informs which dependency should be ignored to
break the cycle.

० So, use post-init-providers to break cycles reported by fw_devlink to improve
probe/suspend/resume determinism and stability.

Break cycles using post-init-providers

Pointy end of arrow is at supplier/parent
Red arrows indicate parent-child relationship
These cycles are from real world scenarios

YA B EX

C D

Next steps

० I don’t have much/any experience with ACPI.

० If inter-device dependency information can be derived from ACPI nodes (struct
acpi_device) please work with me to add support for it.

० fw_devlink was designed with the intent of making it easy to add support for different
firmware types.

Add ACPI support?

० Managed devices links are device links that enforce probe ordering and auto consumer
probe/unbind when the supplier probes/unbinds.

० Managed device links don’t properly handle the case where the supplier belongs to a
struct class.

० The consumer is indefinitely blocked from probing because the supplier never probes.

० The consumer is not unbound (if the device link was created after consumer probes)
when the supplier is removed.

० TODO:

○ Fix handling of class devices to treat addition/removal similar to probing/unbind
of bus devices.

○ Fix auto probe/unbind to handle removal of class suppliers.

Device links & class devices

० Ulf is working on adding sync_state() support to power domains.

० I’ve signed up to finish up my patch for clocks, but haven’t gotten around to it in a while.

० Need to fix the class stuff to try and add sync_state() support for regulators.

० Interconnect framework is the only framework with sync_state() support so far.

More sync_state() support in frameworks

Multiple devices from a fwnode/DT node

० As mentioned before, if one fwnode / struct device_node has multiple devices,
fw_devlink cannot determine which device a consumer depends on.

० When this happens, fw_devlink just picks the first device that was created from a device
node.

० No clear/good solution that doesn’t involve the drivers.

० Might give a way to mark a device as “don’t use as supplier” as a good enough solution
for now.

Thank you!
Questions?

