
Paravirt Scheduling
3rd iteration

Vineeth Pillai (Google) <vineeth@bitbyteword.org>
Joel Fernandes (Google) <joel@fernandes.org>

mailto:vineeth@bitbyteword.org
mailto:joel@fernandes.org

Agenda

• What and Why?
• Some History
• Design and Implementation
• Some Numbers
• What next

Motivation

• Double scheduling: Host schedules vcpu threads and the guest
schedules the tasks running inside the guest

• Both schedulers are unaware of the other
• Hosts schedules vcpu threads without knowing what's being run on the

vcpu
• Guest schedules tasks without knowing where the vcpu is running

physically

Motivation (Contd…)

• Mostly, vCPUs are regular CFS tasks in the host and does not get
to run in a timely fashion when the host is experiencing load

• Host scheduler tries to be fair and doesn’t know about the priority
requirements

• This can cause issues with latencies, power consumption,
resource utilization etc.

Paravirt Scheduling: Concepts

• Efficient task scheduling decisions based on scheduling information
shared between the guest and the host.

• Information shared via shared memory between guest and host.
• General framework in kernel to share the memory and guest/host

negotiation
• Scheduling policies could be implemented as a kernel module or bpf

program both in the guest and host.

Paravirt Scheduling: History

● V1: https://lkml.org/lkml/2023/12/13/1789
○ Kvm does most of the heavy lifting: handshake, policies, scheduling decision
○ Upstream was against having all these logic in kvm

● V2: https://lwn.net/Articles/968242/
○ Kvm does the handshake with the guest
○ Policy and scheduling decision designed to be implemented separately as a kernel

module or a BPF program
○ module/BPF registers to kvm for receiving callbacks on interested events
○ Kvm maintainers is not favorable with the idea of having the handshake also in kernel

● V3
○ Handshake and negotiation logic in the VMM
○ Policies and scheduling decisions in a eBPF program (loaded by the VMM)

■ Could be a kernel module as well

https://lkml.org/lkml/2023/12/13/1789
https://lwn.net/Articles/968242/

Paravirt Scheduling: V1
Host Userland

Host Kernel

VMM
Guest Userland

Guest Kernel

KVM

vcpu1
thread

vcpu2
thread

vcpu3
thread

vcpu4
thread

Scheduler

Handshake
Protocol Negtotiation

Hypercall/MSR

Paravirt Scheduling: v2
Host Userland

Host Kernel

VMM
Guest Userland

Guest Kernel

KVM

Kernel module
/

 BPF program

vcpu1
thread

vcpu2
thread

vcpu3
thread

vcpu4
thread

Scheduler

Handshake
Protocol Negtotiation

Hypercall/MSR

Paravirt Scheduling: v3
Host Userland

Host Kernel

VMM
Guest Userland

Guest Kernel
pvsched driver/bpf program

KVM

pvsched-device
process

VMM main thread

Kernel module
/

 BPF program

vcpu1
thread

vcpu2
thread

vcpu3
thread

vcpu4
thread

Scheduler

Other device processes

Paravirt Scheduling: pvsched device

Host Userland

Host Kernel

VMM
Guest Userland

Guest Kernel
pvsched driver/bpf program

KVM

pvsched-device
process

VMM main thread

Kernel module
/

 BPF program

vcpu1
thread

vcpu2
thread

vcpu3
thread

vcpu4
thread

Scheduler

Other device
processes

Paravirt Scheduling: pvsched device

• Responsible for handshake with the guest
• Exposes a pci device to the guest

• A BAR writable by guest. Guest writes the base address of the shared memory
region

• Could be extended in future for including feature and policy
negotiations

Paravirt Scheduling: pvsched device

• Prototype implemented in crosvm(VMM written in rust for chromeos)
• aya-rs: https://aya-rs.dev/

• Pvsched device runs as a separate sandboxed process
• Receives the shared memory GPA from guest and converts to Host

Virtual Address in the process address space
• Loads the kernel module or ebpf program that implements the policy

and passes details(vcpu id, pid, shared memory address etc)
• Kernel module: ioctl to pass the information
• eBPF program: BPF_MAP_TYPE_HASH (indexed by vcpu pid)

https://aya-rs.dev/

Paravirt Scheduling: Guest pvsched driver

Host Userland

Host Kernel

VMM
Guest Userland

Guest Kernel
pvsched driver/bpf program

KVM

pvsched-device
process

VMM main thread

Kernel module
/

 BPF program

vcpu1
thread

vcpu2
thread

vcpu3
thread

vcpu4
thread

Scheduler

Other device
processes

Paravirt Scheduling: Guest pvsched driver

• Kernel mode driver binds to the pvsched device
• Allocates a page for the shared memory

• Contains an array of structures one per-vcpu
• Writes the shared memory GPA to the BAR exposed by the device
• The prototype has the shared memory updation logic inbuilt in the

pvsched driver
• This could be separated out and implemented as another kernel

module or a BPF program
• Cater to specialized use cases.

Paravirt Scheduling: Guest pvsched driver

• Registers to scheduler and kernel critical section trace points
• sched_switch, sched_wake*
• {nmi/irq/softirq)_{entry/exit}, preempt_{disable/enable}
• exit_to_user

• Updates the shared memory on trace point callbacks.
• On kernel critical sections, set a flag in the shared memory
• Update the shared memory with priority(policy, nice, rt_prio) of the process

that is woken up /switched to.

Paravirt Scheduling: scheduling policy

Host Userland

Host Kernel

VMM
Guest Userland

Guest Kernel
pvsched driver/bpf program

KVM

pvsched-device
process

VMM main thread

Kernel module
/

 BPF program

vcpu1
thread

vcpu2
thread

vcpu3
thread

vcpu4
thread

Scheduler

Other device
processes

Paravirt Scheduling: scheduling policy

• Could be implemented as a kernel module or eBPF program
• Retrieves the VM and vcpu details from the VMM(nr_vcpus, vcpu_id,

vcpu_pid etc)
• Registers for VM event callbacks(VMENTER, VMEXIT, VCPU_HALT,

INJ_INTR, …)
• Enforces the scheduling policies on receiving the callbacks

Paravirt Scheduling: scheduling policy

• Policy can be custom implemented based on the use case and
requirements.

• Our prototype uses a simple policy to minimize latency
• Boost the vcpu priority on latency sensitive workloads in the guest
• 1:1 translation of linux scheduling parameters from guest task to vcpu task in

the host.
• Implements vcpu throttling for misbehaving vcpus

Paravirt Scheduling: Latency mitigation Policy

• VMEXIT
• Get the requested scheduling parameters from VM
• Check if the vcpu needs to be throttled based on how long it has been boosted
• Check if the vcpu needs to be unthrottled based on how long it has been

throttled
• Cap the scheduling priority based on the limits set by admin
• If VM is not throttled, apply the scheduling priority (sched_setattr)

• VMENTER
• Do the time accounting for boosting, throttling

Paravirt Scheduling: Latency mitigation Policy

• VCPU_HALT
• Boost the vcpu thread: going to be scheduled out and it will be woken up only

on latency sensitive events like interrupts. Guest will request unboost as soon
as it is done with priority work loads.

• Interrupt Injection
• Boost the vcpu thread.

Implementation Details

pvsched device

Guest kernel
pvsched driver

vcpu 0
vcpu 1
vcpu 2

vcpu n-1

BAR

SHM GPA

Host Kernel

Bpf Program (pvsched policy)

Bpf maps

Bpf maps

BPF_PROG_TYPE_TRACING

KVM

TRACE_VMEXIT
TRACE_VMENTER

TRACE_VCPU_HALT
TRACE_INJ_INTR

TRACE_SCHED_SWITCH
TRACE_SCHED_WAKEUP*

TRACE_EXIT_TO_USER
TRACE_PREEMPT_DISABLE
TRACE_PREEMPT_ENABLE

TRACE_IRQ_ENTRY
TRACE_IRQ_EXIT

…

Trace callback
handlers

Shared memory

Implementation: Shared Memory

Implementation: Shared Memory

Implementation: Shared Memory

Implementation: pvsched policy(bpf program)

BPF_MAP_TYPE HASH stores the vcpu specific information

Implementation: pvsched policy(bpf program)

Implementation: pvsched policy(eBPF program)

Implementation: eBPF program & Shared mem

• Ideally, VMM should be able to share the shared memory Virtual
address with the eBPF program

• Due to ebpf safety constraints, this is not possible easily.
• Alternatives

• bpf_probe_{read/write}_user

Implementation: eBPF program & Shared mem

• Ideally, VMM should be able to share the shared memory Virtual
address with the eBPF program

• Due to ebpf safety constraints, this is not possible easily.
• Alternatives

• bpf_probe_{read/write}_user
• Trace point callback can happen in non-process context

Implementation: eBPF program & Shared mem

• Ideally, VMM should be able to share the shared memory Virtual
address with the eBPF program

• Due to ebpf safety constraints, this is not possible easily.
• Alternatives

• bpf_probe_{read/write}_user
• Trace point callback can happen in non-process context

• bpf_probe_read_kernel

Implementation: eBPF program & Shared mem

• Ideally, VMM should be able to share the shared memory Virtual
address with the eBPF program

• Due to ebpf safety constraints, this is not possible easily.
• Alternatives

• bpf_probe_{read/write}_user
• Trace point callback can happen in non-process context

• bpf_probe_read_kernel
• Need a bpf mechanism to map process Virtual Address space to kernel
• No kernel address write support.

Implementation: eBPF program & Shared mem

• Ideally, VMM should be able to share the shared memory Virtual
address with the eBPF program

• Due to ebpf safety constraints, this is not possible easily.
• Alternatives

• bpf_probe_{read/write}_user
• Trace point callback can happen in non-process context

• bpf_probe_read_kernel
• Need a bpf mechanism to map process Virtual Address space to kernel
• No kernel address write support

• kptr
• Write support?

Implementation: eBPF program & Shared mem

• Ideally, VMM should be able to share the shared memory Virtual
address with the eBPF program

• Due to ebpf safety constraints, this is not possible easily.
• Alternatives

• bpf_probe_{read/write}_user
• Trace point callback can happen in non-process context

• bpf_probe_read_kernel
• Need a bpf mechanism to map process Virtual Address space to kernel
• No kernel address write support

• kptr
• Write support?

• BPF_MAP_TYPE_TASK_STORAGE

Implementation: eBPF program & Shared mem

• Ideally, VMM should be able to share the shared memory Virtual
address with the eBPF program

• Due to ebpf safety constraints, this is not possible easily.
• Alternatives

• bpf_probe_{read/write}_user
• Trace point callback can happen in non-process context

• bpf_probe_read_kernel
• Need a bpf mechanism to map process Virtual Address space to kernel
• No kernel address write support

• kptr
• Write support?

• BPF_MAP_TYPE_TASK_STORAGE
• Share user memory through task local storage:

https://lore.kernel.org/bpf/20240816191213.35573-4-thinker.li@gmail.co
m/T/

https://lore.kernel.org/bpf/20240816191213.35573-4-thinker.li@gmail.com/T/
https://lore.kernel.org/bpf/20240816191213.35573-4-thinker.li@gmail.com/T/

Implementation: eBPF Program & Shared mem

• Our Prototype uses a HACK!
• Modify struct task_struct to include the kernel address and page
• Use sched_setscheduler to set these fields
• VMM calls set_scheduler for vcpu tasks
• BPF kfunc for set/get

struct task_struct {
 …
 void *pvsched_shm_addr;
 struct page *pvsched_shm_page;
 …
};

Implementation: eBPF Shared mem kfunc

Implementation: eBPF and scheduler

• We need to call into scheduler to modify the scheduling parameters of
vcpu tasks.

• Implemented kfunc

Implementation: pvsched tunables

• Implemented as BPF maps and VMM can adjust these tunables
• Scheduling priority for vcpu task when guest is in a kernel critical section or

host is injecting interrupt.
• Maximum boost time allowed for a vcpu task before it is throttled
• Throttle duration
• Debug levels

Implementation: eBPF limitations

• Timers and spinlocks not possible for trace points.
• Shared memory access is a bit tricky without firsthand bpf support!
• Needs scheduler kfunc/helpers
• ?

Some performance numbers

• Quick synthetic test with cyclictest on host and guest
• observe latency impact on guest
• observe if any regression on host

• Tested on an idle host and busy host
• Busy host simulated by stress-ng

• Host System
• Intel(R) Pentium(R) Silver N6000 @ 1.10GHz
• 8GB RAM (LPDDR4-2933)
• Fedora 40 (6.10.10)

cyclictest --mlockall -q -p 8 --policy=rr

stress-ng --cpu 2 --iomix 1 --vm 1 --vm-bytes 128M --fork 1

Some performance numbers (Idle Host)

Legend:
Vanilla: Host kernel: 6.10 guest kernel: 6.10
v1: Host and guest kernels with the v1 patches
v3-kmod: v3 with policy implemented in kernel module
V3-bpf: v3 with Policy implemented in bpf

Interval(us) vanilla v1 v3-kmod v3-bpf

500 60 65 63 64

1000 71 74 72 70

Interval(us) vanilla v1 v3-kmod v3-bpf
500 102 76 48 70

1000 160 124 120 120

Interval(us) vanilla v1 v3-kmod v3-bpf
500 29 28 25 30

1000 72 70 71 70

Interval(us) vanilla v1 v3-kmod v3-bpf
500 26 34 26 22

1000 90 80 70 85

Guest: Average latency in micro seconds Host: Average latency in micro seconds

Guest: Max latency in micro seconds Host: Max latency in micro seconds

Some performance numbers (Busy Host)

Legend:
Vanilla: Host kernel: 6.10 guest kernel: 6.10
v1: Host and guest kernels with the v1 patches
v3-kmod: v3 with policy implemented in kernel module
V3-bpf: v3 with Policy implemented in bpf

Guest: Average latency in micro seconds Host: Average latency in micro seconds

Guest: Max latency in micro seconds Host: Max latency in micro seconds

Interval(us) vanilla v1 v3-kmod v3-bpf
500 680 685 680 684

1000 600 600 600 610

Interval(us) vanilla v1 v3-kmod v3-bpf
500 9335 7500 7467 7480

1000 14128 12700 12648 12700

Interval(us) vanilla v1 v3-kmod v3-bpf
500 653 668 641 685

1000 760 750 754 740

Interval(us) vanilla v1 v3-kmod v3-bpf
500 8049 8018 8099 8067

1000 12524 12549 12495 12421

Paravirt Scheduling v3: Future

• Upstream collaboration to get the eBPF support like kfunc/helpers for
scheduler integration

• Upstream collaboration to get shared memory access support
• A new map to share data directly between guest and host?

• Spinlock and timer support
• Use bpf struct_ops instead of trace points?

• Customizability
• Generalize the shared memory area (union vcpu_sched) to support more use

cases
• Protocols, versioning etc.

• Guest side BPF?
• sched_ext in guest?

Paravirt Scheduling v3: Future

• Use sched events rather than kvm events
• For the latency mitigation, we are only concerned about a vcpu being

preempted and vcpus getting to vcpu as soon as woken up.
• So, why not hook to sched_switch and sched_wakeup instead of

VMEXIT/VMENTER?
• Still, need to hook to interrupt injection path

• vcpu may be scheduled out between interrupt injection and VMENTER, if not
boosted

• modify kvm_vcpu_kick() to hint the scheduler about the reason for the kick -
interrupt, ipi, …

Paravirt Scheduling v3: Conclusion

• Generic framework for aiding custom policies to be implemented as a
kernel module or bpf program

• Shows similar results as v1
• KVM/Hypervisor depency almost removed completely

• Mostly addition of trace points.
• Minimal changes in kernel

• Mostly trace points

Danke!

