
ACPI fast handover for
kexec live-update
Fam Zheng <fam.zheng@bytedance.com>

System Technologies and Engineering (STE), ByteDance

1

Agenda
• Introduction

• ACPI during boot

• Preserving ACPI state across kexec

• Conclusion and future plan

2

Introduction
• Why care about ACPI in kexec?

• kexec is very useful to quickly deploy new kernel in production
• On top of previous optimizations[1], acpi_init() is the next target

3

The call chain
kernel_init
 do_one_initcall
 acpi_init
 acpi_load_tables
 acpi_initialize_objects
 acpi_early_processor_control_setup
 acpi_scan_init
 ...

4

Boot time analysis with initcall_debug=1
• dmesg | grep initcall | sort -n -k 8

5

Boot time analysis with function_graph

• ftrace=function_graph ftrace_graph_max_depth=2
ftrace_graph_filter=acpi_init

• 0) @ 223895.8 us | acpi_load_tables();
• 0) @ 895929.9 us |

acpi_early_processor_control_setup();
• 0) @ 426643.9 us | acpi_scan_init();

• Note these numbers are with significant tracing overhead

6

Breaking down [1/3]
• acpi_load_tables()

• 0) + 84.666 us | acpi_ev_install_region_handlers();
• 0) @ 198017.2 us | acpi_tb_load_namespace();
• 0) * 14992.95 us | acpi_ns_initialize_objects();

• acpi_ev_install_region_handlers
• Keep as-is

• acpi_tb_load_namespace()
• Mostly parsing tables
• Focus of optimization

• acpi_ns_initialize_objects()
• Relatively cheap, skip for now

7

Breaking down [2/3]
• acpi_early_processor_control_setup

• Calls _OSC or _PDC
• Used to report to platform processor capability bits

• TBD: Is this safe/possible to bypass during kexec?

8

Breaking down [3/3]
• acpi_scan_init

• This does most of the device driver init

• TBD: can we safely use ACPI_NO_DEVICE_INIT if kexec?

9

Adding save/restore to acpi_load_tables
• To add acpi=restore mode

• bypass acpi_tb_load_namespace()
• “restore” from a preserved memory location

if (acpi==restore)
acpi_restore_namespace(); /* fast path */

else
acpi_tb_load_namespace(); /* slow path */

• ... which depends on:
• A way to predictably reserve memory for save/restore
• Simple and fast, to avoid expensive / complex setup at boot time

10

What to save/restore
• Conveniently collected in drivers/acpi/acpica/acglobal.h

• Derived from
https://github.com/acpica/acpica/blob/master/source/include/acgloba
l.h

• Tables
• acpi_gbl_DSDT, acpi_gbl_original_dsdt_header,

acpi_gbl_dsdt_index, ...
• Namespace

• struct acpi_namespace_node acpi_gbl_root_node_struct
• struct acpi_namespace_node acpi_gbl_root_node

11

ACPI runtime state

12

ACPI runtime state

> 20k nodes
> 300k objects

13

Preserving state across kexec
• Allocate ACPI objects in preserved memory areas

• Save/load root objects during reboot

14

15

Patching ACPI_ALLOCATE() & ACPI_FREE()

• Replace acpi_os_allocate / acpi_os_free to use a “preserved”
allocator

• All pointers returned remain “valid” after kexec

• Also, fix 160+ mismatched kfree() pairs, e.g.:

16

Restoring
• Apart from picking up the root node from last kernel, we need

to setup some runtime state
• Mostly reuse acpi_bus_scan() etc.
• But must do some “fixup” first to “stale” nodes, e.g.:

17

Conclusion

• The hacked acpi_init is significantly faster
• Changeset is reasonably small and non-intrusive
• More work needed to cover different cases/platforms
• Debugging is a bit tricky on baremetal

18

Future plans
• A more dynamic KRAM design, or a different approach

• Or at least a more dynamic obj cache

• ACPI correctness
• Ideas are welcome on verifier / sanitizer
• Can KASAN help?

• Look into integrating Agraf’s Kexec HandOver (KHO)
• https://lore.kernel.org/lkml/20240117144704.602-18-

graf@amazon.com/T/

19

Related work
• [1] Improving kexec boot time, Usama Arif

https://lpc.events/event/17/contributions/1512/
• [2] Parallel SMP boot, David Woodhouse & Usama Arif

https://lwn.net/Articles/924933/
• [3] Kexec Handover, Alex Graf

https://lwn.net/Articles/924933/
• [4] Preserving IOMMU States During Kexec

https://kvm-forum.qemu.org/2022/
• [5] QEMU Live Update, Steve Sistare

https://blogs.oracle.com/linux/post/qemu-live-update

20

Thank you!
• Questions?

• Contact: Fam Zheng <fam.zheng@bytedance.com>

21

