
Hazard pointers in Linux
kernel

Boqun Feng 冯博群 (Microsoft)
Neeraj Upadhyay (AMD)
Paul McKenney (Meta)

Scalability of atomic refcount

● refscale (preempt)
○ scale_type=refcnt

● Intel(R) Xeon(R) Platinum 8260
CPU @ 2.40GHz

○ 48 vcpus

Per-CPU refcount and RCU

50,000-Foot Level Reference Counting vs. RCU

Property Reference Counting Per-CPU Ref
Count

RCU

Readers Slow & unscalable Fast and scalable Fast and scalable

Memory Overhead O(Nobj) O(Nobj*Ncpu) O(Nobj*)

Protection Duration Can be long Can be long Bounded duration

Traversal Retries If any object deleted If any object deleted Never

Deferred Memory None Switch to global Can be large

*: assume that Nobj > Ncpu/Ntask and rcu_head is used.

50,000-Foot Level Reference Counting vs. RCU vs. ???

Property Reference
Counting

Per-CPU Ref
Count

RCU ???

Readers Slow & unscalable Fast and scalable Fast and scalable Fast and scalable

Memory Overhead O(Nobj) O(Nobj*Ncpu) O(Nobj) ~O(Nobj)

Protection Duration Can be long Can be long Bounded duration Can be long

Traversal Retries If any object
deleted

If any object
deleted

Never If any object
deleted

Deferred Memory None Switch to global Can be large ???

Hazard pointers

● Introduced at 2004:
○ M. M. Michael, "Hazard pointers: safe memory reclamation for lock-free objects," in IEEE

Transactions on Parallel and Distributed Systems, vol. 15, no. 6, pp. 491-504, June 2004
● C++ standard library

○ https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2024/n4981.pdf
● Other userspace libraries:

○ https://github.com/facebook/folly/blob/main/folly/synchronization/Hazptr.h
○ https://github.com/jonhoo/haphazard

https://github.com/facebook/folly/blob/main/folly/synchronization/Hazptr.h

Hazard pointers (slot)

● Hazard pointer slots
○ Can store one pointer value
○ Allocated by each reader
○ Updaters can access all the slots

gp A
slot

Hazard pointers (reader acquire)

1: tmp1 = READ_ONCE(gp); // snapshot the global pointer value

2: WRITE_ONCE(*slot, tmp1); // store the value into a hazard pointer slot

3: smp_mb();

4: tmp2 = READ_ONCE(gp); // re-snapshot the global pointer value

5: if (tmp1 == tmp2) {

return tmp2;

} else {

5b: WRITE_ONCE(*slot, NULL); // reset hazard pointer slot

<continue step 1 or abort>

}

Hazard pointers (reader release)

1: smp_store_release(slot, NULL);

Hazard pointers (updater)

1: todo = READ_ONCE(gp);

2: WRITE_ONCE(gp, NULL); // unpublish todo

3: smp_mb();

4: ptr = READ_ONCE(*slot); // fetch the pointer that a hazard pointer is protecting

5: if (ptr == todo) {

<continue to step 4>

} else {

<check more slots>

}

Hazard pointers (synchronization case #1)
<reader> <updater>

1: tmp1 = READ_ONCE(gp);

2: WRITE_ONCE(*slot, tmp1);

2: WRITE_ONCE(gp, NULL);

...

3: smp_mb();

4: tmp2 = READ_ONCE(gp);

5: if (tmp1 == tmp2) { // false, reader will try again

} else {

5b: WRITE_ONCE(*slot, NULL);

4: ptr = READ_ONCE(*slot);

}

gp A
slot

gp A
slot

gp A
slot

gp A
slot

Hazard pointers (synchronization case #2)
<reader> <updater>

1: tmp1 = READ_ONCE(gp);

2: WRITE_ONCE(*slot, tmp1);

3: smp_mb();

4: tmp2 = READ_ONCE(gp);

5: (tmp1 == tmp2) {

return tmp2;

1: todo = READ_ONCE(gp);

2: WRITE_ONCE(gp, NULL);

} 3: smp_mb();

4: ptr = READ_ONCE(*slot);

5: if (ptr == todo) {

<continue to step 4>

}

gp A
slot

gp A
slot

gp A
slot

Hazard pointers (synchronization case #3)
<reader> <updater>

smp_store_release(slot, NULL);

4: ptr = smp_load_acquire(*slot);

5: if (ptr == todo){

...

} else {

<clean up ptr if it’s the last slot>.

}

gp A
slot

gp A
slot

Hazard pointers

● Summary
○ Users of hazard pointers need to allocate hazard pointer slots before protection - users bring

their own counter
○ One hazard pointer can protect different objects
○ Updaters of hazard-pointer-protected objects can check the readers of a particular object.

100,000-Foot-Level Hazard Pointers vs. RCU

RCU can be thought of as a fast and scalable replacement for reader-writer
locking

Hazard pointers can be thought of as a fast and scalable replacement for
reference counting

There is significant overlap in the use cases for hazard pointers and RCU

50,000-Foot Level Reference Counting, RCU, & Hazptr

Property Reference
Counting

Per-CPU Ref
Count

RCU Hazard Pointer

Readers Slow & unscalable Fast & scalable Fast & scalable Fast & scalable

Memory
Overhead

O(Nobj) O(Nobj*Ncpu) O(Nobj) ~O(Nobj)

Protection
Duration

Can be long Can be long Bounded
duration

Can be long

Traversal
Retries

If any object
deleted

If any object
deleted

Never If any object
deleted

Deferred
Memory

None Switch to global Can be large Depends on
scan interval

Implementation of hazptr

● hazptr_context: how hazard pointer slots are maintained.
● reader scan: how updaters scan the slots to readers of a particular object.

hazptr_context

● Hazard pointer slots: “Allocated by each reader” and “Updaters can access all
the slots”

● Provides fixed amount of slots (for allocation).
● Each context can add any number of hazptr_context into a global list (for

reader queries from updaters).

lock_ptr list_head padding slot slot slot …

Hazptr basic usage
<initialization>

init_hazptr_context(ctx);

hazptr_t *hptr = hazptr_alloc(ctx); // readers allocate the hazard pointer ahead of time

<reader>

if (p = hazptr_tryprotect(hptr, gp /* a global pointer */, ..)) {

// p is valid reference to gp, until hazptr_clear(hptr).

hazptr_clear(hptr);

}

<updater>

ptr = READ_ONCE(gp); // another synchronization between different updaters.

WRITE_ONCE(gp, NULL);

call_hazptr(&ptr->hazptr_head, func);

Reader scan

● If there are M objects to be freed and N active slots, the time complexity of a
full scan would be M x N.

● Some user-space implementation uses BTree or other search trees to store
the scan result of all the slots.

○ But it’s an “allocate memory to free memory” situation.
● In the current implementation, a rbtree node is allocated ahead of the time to

avoid allocating memory in hazptr callback handling.
○ Because readers can change the slot at any time, updaters need to store the snapshot value

of a slot into the rbtree.
○ Readers don’t touch the rbtree (unless it’s a context removal).

lock_ptr list_head slot slot …rb_node snap …rb_node snap

Status

● https://lore.kernel.org/lkml/20240917143402.930114-1-boqun.fe
ng@gmail.com/

● Memory overhead
○ O(Nobj) due to hazptr_head
○ O(NTask * Nref-per-task)

https://lore.kernel.org/lkml/20240917143402.930114-1-boqun.feng@gmail.com/
https://lore.kernel.org/lkml/20240917143402.930114-1-boqun.feng@gmail.com/

Case Study

● Nginx Workers Scaling Issue with Apparmor

CPU 1: Worker 1

Nginx Workers Scaling Issue with Apparmor

CPU2: Worker 2

CPU3: Worker 3

CPUn: Worker n

File Open

.

.

.

.

.

.

File Open

File Open

File Open

.

.

.

.

.

.

 nginx-12151 [006] ...1. 436426.250125: <stack trace>
 => kretprobe_trace_func
 => kretprobe_dispatcher
 => kretprobe_rethook_handler
 => rethook_trampoline_handler
 => arch_rethook_trampoline_callback
 => arch_rethook_trampoline
 => security_file_open
 => do_dentry_open
 => path_openat
 => do_filp_open
 => do_sys_openat2
 => __x64_sys_openat
 => do_syscall_64

Use Hazard Pointers for apparmor_file_open()
static int apparmor_file_open(struct file *file)
{
...
+ struct hazptr_context ctx;
+ hazptr_t *hptr;

...
- label = aa_get_newest_cred_label(file->f_cred);
+ init_hazptr_context(&ctx);
+ hptr = hazptr_alloc(&ctx);
+ label = aa_get_newest_cred_label_hazptr(file->f_cred, hptr);
...
- aa_put_label (label);

+ hazptr_clear(hptr);
+ cleanup_hazptr_context(&ctx);
 return error;
 }

Label Acquire Path
static inline struct aa_label *aa_get_newest_cred_label_hazptr(const struct cred *cred, hazptr_t
*hptr)
{
 return aa_get_newest_label_hazptr(aa_cred_raw_label(cred), hptr);
}

static inline struct aa_label *aa_get_newest_label_hazptr(struct aa_label *l, hazptr_t *hptr)
{
 if (!l)
 return NULL;

 if (label_is_stale(l)) {
 struct aa_label *tmp;

 …
 tmp = aa_get_label_try_hazptr(&l->proxy->label, hptr);
 …

 return tmp;
 }

 return hazptr_protect(hptr, l, rcu);
}

Label Acquire Path
static inline struct aa_label *aa_get_label_try_hazptr(struct aa_label __rcu **l,
hazptr_t *hptr)
{
 struct aa_label *c;

 do {

 c = hazptr_tryprotect(hptr, *l, rcu));
 } while (!c);

 return c;
}

Label Release Path
-void aa_label_kref(struct kref *kref)
+static void label_hazptr_func(struct callback_head *head)
 {

+ struct aa_label *label = container_of(head, struct aa_label,
rcu);

 call_rcu(&label->rcu, label_free_rcu);
 }

+void aa_label_kref(struct kref *kref)
+{
+ struct aa_label *label = container_of(kref, struct aa_label,
count);

...
+ call_hazptr(&label->rcu, label_hazptr_func);
+}
+

● 1. Run Nginx [1] in web serving mode.

● 2. Use wrk2 load generator [2] so that 192 clients send request for 192 different files. The wrk
clients run on socket 1.

● 3. There are 192 nginx workers and each worker handles request for a different client. The
workers run on socket 0.

● Platform: 2 Socket 4th Generation EPYC Processor with 96 Cores, 192 threads per socket.

[1] https://nginx.org/en/download.html
[2] https://github.com/giltene/wrk2

Test Environment

https://nginx.org/en/download.html
https://github.com/giltene/wrk2

Test Environment

Throughput (Higher is better)

Baseline Apparmor Disabled Hazard Pointers

Kref +11.6% +7.4%

31

COPYRIGHT AND DISCLAIMER
©2024 Advanced Micro Devices, Inc. All rights reserved.
AMD, the AMD Arrow logo, EPYC and combinations thereof are trademarks of Advanced Micro Devices, Inc. Linux is a registered trademark of Linus Torvalds. Other
company, product, and service names used in this publication are for identification purposes only and may be trademarks of their respective companies.

The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions, and typographical errors. The
information contained herein is subject to change and may be rendered inaccurate releases, for many reasons, including but not limited to product and roadmap
changes, component and motherboard version changes, new model and/or product differences between differing manufacturers, software changes, BIOS flashes,
firmware upgrades, or the like. Any computer system has risks of security vulnerabilities that cannot be completely prevented or mitigated. AMD assumes no obligation
to update or otherwise correct or revise this information. However, AMD reserves the right to revise this information and to make changes from time to time to the content
hereof without obligation of AMD to notify any person of such revisions or changes.

THIS INFORMATION IS PROVIDED 'AS IS." AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS HEREOF AND
ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS, OR OMISSIONS THAT MAY APPEAR IN THIS INFORMATION. AMD SPECIFICALLY
DISCLAIMS ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT WILL
AMD BE LIABLE TO ANY PERSON FOR ANY RELIANCE, DIRECT, INDIRECT, SPECIAL, OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF
ANY INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Q & A

Hazard pointers (synchronization case #1 ABA?)
<reader> <updater>

1: tmp1 = READ_ONCE(gp);

2: WRITE_ONCE(gp, NULL);

...

4: ptr = READ_ONCE(*slot);

2: WRITE_ONCE(*slot, tmp1);

3: smp_mb();

4: tmp2 = READ_ONCE(gp);

5: if (tmp1 == tmp2) { // true

<Neither A nor B accessed yet>

} else {

}

gp A
slot

gp A
slot

gp B
slot

hazptr_tryprotect(slot, gp, ..)
tmp = READ_ONCE(gp); // fetch the global pointer value

// tmp could be freed here, which would make tmp an invalid pointer.

WRITE_ONCE(*slot, tmp); // store the value into the hazptr slot.

smp_mb(); // pairs with the reader checking at callback handling.

// At this point, hazard pointers guarantees that tmp cannot be freed.

tmp1 = READ_ONCE(gp); // Thus tmp1 cannot become invalid until hazptr_clear()

if (tmp1 == tmp) {

return tmp1;

} else

return NULL;

What is Lifetime-End Pointer Zap?

// C pointers are not just pointers!

p = malloc(sizeof(*p));

do_something(p); // might free(p), and if so, p is now an invalid pointer

q = malloc(sizeof(*q)); // might have same address as p

assert(p != q); // Compiler can optimize to assert(true)

// Inequality implies that p is invalid, thus compiler’s choice

// Pointer “provenance” in addition to pointer’s “value bits”

What is Lifetime-End Pointer Zap?

// C pointers are not just pointers!

p = malloc(sizeof(*p));

do_something(p); // might free(p), and if so, p is now an invalid pointer

q = malloc(sizeof(*q)); // might have same address as p

assert(p != q); // Compiler can optimize to assert(true)

// Inequality implies that p is invalid, thus compiler’s choice

// Pointer “provenance” in addition to pointer’s “value bits”

This invalidates
concurrent algorithms

going back to the 1970s

Current Lifetime-End Pointer Zap Proposals

P2434R1 (“Nondeterministic pointer provenance”)

Davis Herring’s “angelic provenance” paper on which the next two are based.

P2414R4 (“Pointer lifetime-end zap proposed solutions”)

Atomics and volatile operations erase provenance, as does usable_ptr<T> class and a
make_ptr_prospective() function.

P3347R0 (“Invalid/Prospective Pointer Operations”)

Operations on invalid pointers must produce bit values consistent with those of the invalid
pointer. Dereferencing an invalid pointer is still undefined behavior and comparison
involving at least one invalid pointer is still implementation defined

Maged Michael and I started working this issue back in 2017…

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2024/p2434r1.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2024/p2414r4.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2024/p3347r0.pdf

