
Addressing Duplicated Symbol Names in kallsyms: 
Introducing kas_alias

Alessandro Carminati
Principal Software Engineer



Addressing Duplicated Symbol Names in kallsyms: Introducing kas_alias

Who am I:

Kernel Developer in Automotive team

Technical Steering Committee Member
Lead of the Linux Features for Safety-Critical Systems

Open Source Software Contributor



Addressing Duplicated Symbol Names in kallsyms: Introducing kas_alias

● Common assumption: 
○ Monolithic nature makes duplicates seem unlikely.
○ Even experienced developers may overlook this issue, I did.

● Reality: Duplicate symbols are there, waiting to cause trouble.
● Personal experience: They bit me, and they can bite you too.

Is There Really a Problem with Duplicate 
Symbols in the Linux Kernel?



Addressing Duplicated Symbol Names in kallsyms: Introducing kas_alias

Is There Really a Problem with Duplicate 
Symbols in the Linux Kernel?

http://www.youtube.com/watch?v=IW4MrC3wpXs


Addressing Duplicated Symbol Names in kallsyms: Introducing kas_alias

● Duplicate symbols may seem irrelevant to ordinary users.
○ If the kernel works, why should I care?

● In debug session, when you’re tracing the kernel, they might be a concern.
● Live patching: replacing a function in a working production machine, can rise 

concerns.

Why do we care about duplicate symbols?



Addressing Duplicated Symbol Names in kallsyms: Introducing kas_alias

● Kernel is monolithic, but it is not a single giant source file.
● Made up of many source code files compiled into object files linked together.
● Source file depends on other source files, mostly headers.
● Static declared objects can create duplicates since they are not used at link 

time.
● Header files inclusion contributes to duplicates.
● C file includes another C file, can create duplicate names with different 

bodies.

Why Do Duplicate Symbols Happen in the 
Kernel?



Addressing Duplicated Symbol Names in kallsyms: Introducing kas_alias

● Occurs when a kernel C file includes another C file.
● Affects only 0.4% of kernel source files.
● Occasionally present in less popular drivers, but also present in 

compat_binfmt_elf.c which is very popular.
● C file inclusion duplicates code, similar to header files.
● Symbols contained in C file are typically complex and can depend on macros.
● #line directive to modify the debug information included in the object. 

○ PoC available at the URL in the QR.

The "Include C" Case



Addressing Duplicated Symbol Names in kallsyms: Introducing kas_alias

● Link-time optimization seeks to reduce or eliminate duplicate calculations by 
analyzing the entire program.

● LTO is supported by GCC and LLVM
● Kernel builds can have LTO only using LLVM
● LLVM has two modes of LTO

○ monolithic LTO
○ ThinLTO

● LTO is expected to handle duplicate objects that come when objects are linked 
together.
○ Only monolithic LTO provides this by mangling equal name objects.

● Problem solved? 
○ While monolithic LTO handles duplicates by mangling their name, it does not 

provide any mean to distinguish them.

Does LTO Mitigate This Situation?



Addressing Duplicated Symbol Names in kallsyms: Introducing kas_alias

● Duplicate symbol names aren’t the only issue in the kallsyms table.
● Can also find symbols sharing the same address.
● More common for data symbols than text symbols.
● Zero-sized objects causing duplicate addresses for data.
● Lock_class_key is zero-sized if CONFIG_LOCKDEP is not 

defined

Sometimes We Also Have 
Duplicate Addresses



Addressing Duplicated Symbol Names in kallsyms: Introducing kas_alias

● Create aliases for symbols that appear to be duplicates.
● Aliases avoid the disruption to kallsyms users caused by sudden changes.
● Duplicate symbols have been managed locally over time.

○ Live patch uses kallsyms_on_each_match_symbol to handle duplicates.
○ Functions like compare_symbol_name address LTO mangled names.

● Aliases maintain existing function behavior while supporting alias-aware 
computations.

What Do You Propose to Address These 
Duplicate Symbols?



Addressing Duplicated Symbol Names in kallsyms: Introducing kas_alias

● Duplicate symbols can occur even within a single compiler unit.
○ Static local variables for data.
○ Nested functions for text.
○ Compilers usually mangle these names, but the symbols’ identity 

issue can still persist.
○ Not aware kernel code uses any, but possible.

● My tagging strategy: tag symbols with the source file name and line 
number
➕ Allows immediate identification of the symbol.
➕ Includes duplicates within compiler’s unit.
➖ Symbol table not consistent across kernel source code versions.

How to Tag Symbols?



Addressing Duplicated Symbol Names in kallsyms: Introducing kas_alias

● The current pipeline uses nm to gather raw data for 
kallsyms.

● At vmlinux linking time, scripts produce System.map and 
kallsyms data.

● Kallsyms data is converted to fit as an object in the kernel 
image.

● Proposal: Tap into this pipeline to add aliases.
● Result: kallsyms data will embed aliases.
● This process enhances only the kernel image.

Handle duplicate in vmlinux



Addressing Duplicated Symbol Names in kallsyms: Introducing kas_alias

● Requirements:
○ To have the consistency of all symbols in a given kernel build, all objects need to be analyzed.
○ Best if the process of analysis for tagging is executed once.
○ Modules needs their own strategy, since nm pipeline tapping can be only used for vmlinux.

● Strategy: 
○ Reuse the same requirement already introduces for BTF production.
○ Trigger a single computation at vmlinux link time.
○ Use objcopy to modify the symbol table and create aliases.

Handle duplicate in modules 



● Requirements:
○ Have symbols’ statistic available at build time.

● Pros vs Cons:
○ Aliases can be generated only for the new objects according to the existing 

statistics.
○ A new file needs to be added to the kernel distribution artifacts, the file that 

contains symbols’ statistic.
○ The aliases can be added only to the new module’s symbols. If the need for a 

new alias is added, only the new module can have one.
■ If the need for a new alias is for the kernel image, it generally comes first, 

allowing plain names for in-tree symbols and aliases for new module 
symbols.

■ If the need for a new alias is for a module, the order isn't guaranteed, but 
chances often works in favor of the in-tree module.

Addressing Duplicated Symbol Names in kallsyms: Introducing kas_alias

Managing later builds for both OoTs and 
in-trees Modules



Addressing Duplicated Symbol Names in kallsyms: Introducing kas_alias

Title slide templates

Closing slide templates

Divider slide templates

\033[37m



Addressing Duplicated Symbol Names in kallsyms: Introducing kas_alias

Open Issues in Version 7:

● Current Symbol Table Handling: Blatantly breaking the Makefile rule… 
modifying input files. Need to find a cleaner approach that respects the rules 
and avoids overcomplicating the build process.

● LTO-Mangled Symbols: Expanding support to include these in the duplicate 
audience.

● Misleading Debug Info: Need patches to fix issues when C files are 
included… #line is my friend.

● Community Feedback: Mixed reactions, especially around using addr2line 
for tagging. Seeking more input to refine the work.

Open Issues in current implementation



Addressing Duplicated Symbol Names in kallsyms: Introducing kas_alias

Questions



linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twitter.com/RedHat

Red Hat is the world’s leading provider of enterprise 

open source software solutions. Award-winning support, 

training, and consulting services make Red Hat a trusted 

adviser to the Fortune 500. 

Addressing D
uplicated Sym

bol N
am

es in kallsym
s: Introducing kas_alias

Thank you


