Addressing Duplicated Symbol Names in kallsyms:

Introducing kas_alias

Alessandro Carminati
Principal Software Engineer

Addressing Duplicated Symbol Names in kallsyms: Introducing kas_alias

Who am |

https://t.ly/BYfsA

‘ RedHat

Kernel Developer in Automotive team

ELISA

Enabling Linux in
Safety Applications

Technical Steering Committee Member
Lead of the Linux Features for Safety-Critical Systems

n open source

Open Source Software Contributor

Addressing Duplicated Symbol Names in kallsyms: Introducing kas_alias

S

here Really a Problem with Duplicate

Symbols in the Linux Kernel?

Common assumption:

o Monolithic nature makes duplicates seem unlikely.

o Even experienced developers may overlook this issue, | did.
Reality: Duplicate symbols are there, waiting to cause trouble.
Personal experience: They bit me, and they can bite you too.

Is There Rea
Symbolsint

ly a Problem with Duplicate

ne Linux Kernel?

https://t.ly/P6oXu

& RedHat

http://www.youtube.com/watch?v=IW4MrC3wpXs

Addressing Duplicated Symbol Names in kallsyms: Introducing kas_alias

Why do we care about duplicate symbols?

e Duplicate symbols may seem irrelevant to ordinary users.
o Ifthe kernel works, why should | care?
e Indebug session, when you’re tracing the kernel, they might be a concern.
Live patching: replacing a function in a working production machine, can rise
concerns.

Addressing Duplicated Symbol Names in kallsyms: Introducing kas_alias

Why Do Duplicate Symbols Happen in the
Kernel?

Kernel is monolithic, but it is not a single giant source file.

Made up of many source code files compiled into object files linked together.
Source file depends on other source files, mostly headers.

Static declared objects can create duplicates since they are not used at link
time.

Header files inclusion contributes to duplicates.

C file includes another C file, can create duplicate names with different

bodies. Non-Static
symbols

Addressing Duplicated Symbol Names in kallsyms: Introducing kas_alias

he "Include C" Case "‘*-ﬁ%

https://t.ly/3YFlB

e Occurswhen a kernel C file includes another C file.
e Affects only 0.4% of kernel source files.
e QOccasionally present in less popular drivers, but also present in
compat binfmt elf.c whichis very popular.
e Cfileinclusion duplicates code, similar to header files.
e Symbols contained in C file are typically complex and can depend on macros.
e #line directive to modify the debug information included in the object.

o PoC available at the URL in the QR.

Addressing Duplicated Symbol Names in kallsyms: Introducing kas_alias

Does LTO Mitigate This Situation?

e Link-time optimization seeks to reduce or eliminate duplicate calculations by
analyzing the entire program.
e LTOissupported by GCC and LLVM
Kernel builds can have LTO only using LLVM
e L|LVM hastwo modes of LTO
o monolithic LTO
o ThinLTO
e LTO s expectedto handle duplicate objects that come when objects are linked
together.
o Only monolithic LTO provides this by mangling equal name objects.
e Problem solved?
o While monolithic LTO handles duplicates by mangling their name, it does not
provide any mean to distinguish them.

Addressing Duplicated Symbol Names in kallsyms: Introducing kas_alias

Sometimes We Also Have

#ifdef CONFIG_DEBUG_SPINLOCK

D | . t A d d # define spin_lock_init(lock) A
do { A
u p I C a e re S S e S static struct lock_class_key __key; \
__raw_spin_lock_init(spinlock_check(lock), :
#lock, & _key, LD_WAIT_CONFIG); \
e Duplicate symbol names aren’t the only issue in the kallsyms table. i
#else
e Can also find symbols sharing the same address. Eir e \
e More common for data symbols than text symbols. T aintod checktoc o
*(_lock) = __SPIN_LOCK_UNLOCKED(_lock); \
e Zero-sized objects causing duplicate addresses for data. Sl
. . . . #endi
e Lock class keyis zero-sized if CONFIG LOCKDEPis not :

defined

b
b
b
b
b
b
b
b
b

Addressing Duplicated Symbol Names in kallsyms: Introducing kas_alias

What Do You Propose to Address These

Duplicate Symbols?

e Create aliases for symbols that appear to be duplicates.
e Aliases avoid the disruption to kallsyms users caused by sudden changes.
e Duplicate symbols have been managed locally over time.
o Live patchuses kallsyms on each match symboltohandle duplicates.
o Functions like compare symbol nameaddress LTO mangled names.
e Aliases maintain existing function behavior while supporting alias-aware
computations.

Addressing Duplicated Symbol Names in kallsyms: Introducing kas_alias

How to Tag Symbols?

e Duplicate symbols can occur even within a single compiler unit.
o Static local variables for data.
o Nested functions for text.
o Compilers usually mangle these names, but the symbols’ identity
issue can still persist.
o Not aware kernel code uses any, but possible.
e My tagging strategy: tag symbols with the source file name and line
number
== Allows immediate identification of the symbol.
=k= |ncludes duplicates within compiler’s unit.
== Symbol table not consistent across kernel source code versions.

Addressing Duplicated Symbol Names in kallsyms: Introducing kas_alias

Handle duplicate in vmlinux

| nm -n vmlinux |

‘nm text output

| script/kallsyms il

S file carrying compressed text

__ ¥ __

| toolchain 1

Object file

1 linker |

vmlinux with kallsyms table

The current pipeline uses nm to gather raw data for
kallsyms.

At vmlinux linking time, scripts produce System.map and
kallsyms data.

Kallsyms data is converted to fit as an object in the kernel
image.

Proposal: Tap into this pipeline to add aliases.

Result: kallsyms data will embed aliases.

This process enhances only the kernel image.

?

| nm -n vmlinux "|

nm text output

nm text output with aliases

| script/kallsyms :|

S file carrying compressed text

/'¢'ﬂ
| toolchain |

Object file

[linker |

vmlinux with kallsyms table

& RedHat

Addressing Duplicated Symbol Names in kallsyms: Introducing kas_alias

Handle duplicate in modules

e Requirements:
o To have the consistency of all symbols in a given kernel build, all objects need to be analyzed.
o Best if the process of analysis for tagging is executed once.
o Modules needs their own strategy, since nm pipeline tapping can be only used for vmlinux.

e Strategy:
o Reuse the same requirement already introduces for BTF production.
o Trigger a single computation at vmlinux link time.
o Use objcopy to modify the symbol table and create aliases.

Addressing Duplicated Symbol Names in kallsyms: Introducing kas_alias

Managing later builds for both OoTls and
in-trees Modules

e Requirements:
o Have symbols’ statistic available at build time.
e Pros vs Cons:
o Aliases can be generated only for the new objects according to the existing
statistics.
o Anew file needs to be added to the kernel distribution artifacts, the file that
contains symbols’ statistic.

ncm opts ifname_show:

o The aliases can be added only to the new module’s symbols. If the need for a ccn_opts_ifnane
new alias is added, only the new module can have one. Pl bs Tiee
m If the need for a new alias is for the kernel image, it generally comes first, tdff kll
allowing plain names for in-tree symbols and aliases for new module vendor_name_show:

symbols.
m If the need for a new alias is for a module, the order isn't guaranteed, but
chances often works in favor of the in-tree module. & RedHat

Addressing Duplicated Symbol Names in kallsyms: Introducing kas_alias

~ # cat /proc/kallsyms | grep ™ name_show"

ffffcaa2bb4f01c8
ffffcaa2bb4folcs

ffffcaazbbac4754
ffffcaa2bbac4754

ffffcaa2bbec4038
ffffcaa2bbec4038

ffffcaa2zbbed3840
ffffcaa2bbed3840

Ffffcaa2bbfe3328
ffffcaa2bbf03328

ffffcaa2bbff8d78
ffffcaa2bbff8d78

ffffcaa2bco0lf60
ffffcaa2bco0lf60

ffffcaa2bcol212c
ffffcaa2bcOl212c

ffffcaa2ad52102c
ffffcaa2ab52102c

t

o o o B o Y o B T o 50 o Y o B o B o o B o o (B o R o R o Y o Y B A A B T o B Y o N B B T o B o R B B i

name show

name show@kernel_irq_irqdesc_c_264

name show

name show@drivers_pnp_card_c_186

name show

name show@drivers_regulator_core_c_678

name show

name show@drivers_base_power_wakeup_stats_c_93
name show

name show@drivers_rtc_sysfs_c_26

name show

name show@drivers_i2c_i2c_core_base_c_660

name show

name show@drivers_i2c_i2c_dev_c_100

name show

name show@drivers_pps_sysfs_c_66

name show

name show@drivers_hwmon_hwmon_c_72

name show

name show@drivers_remoteproc_remoteproc_sysfs_c_215
name show

name show@drivers_rpmsg_rpmsg_core_c_455

name show

name show@drivers_devfreq_devfreq_c_1395

name show

name show@drivers_extcon_extcon_c_389

name show

name show@drivers_iio_industrialio_core_c_1396
name show

name show@drivers_iio_industrialio_trigger_c_51
name show

name show@drivers_fpga_fpga_mgr_c_618
name_show [hello]

name show@hello_hello_c_8 [hello]

name show [rpmsg_char]

name show@drivers_rpmsg_rpmsg_char_c_365 [rpmsg_char]

Addressing Duplicated Symbol Names in kallsyms: Introducing kas_alias

Open Issues in current implementation {:'.:é%

https://t.1ly/470An
Open Issues in Version 7:
e Current Symbol Table Handling: Blatantly breaking the Makefile rule...

modifying input files. Need to find a cleaner approach that respects the rules
and avoids overcomplicating the build process.

e LTO-Mangled Symbols: Expanding support to include these in the duplicate
audience.

e Misleading Debug Info: Need patches to fix issues when C files are
included... #1ine is my friend.

e Community Feedback: Mixed reactions, especially around using addr21line
for tagging. Seeking more input to refine the work.

& RedHat

Addressing Duplicated Symbol Names in kallsyms: Introducing kas_alias

Questions

>
[= %
o
=]
@D
7}
@,
3
(o}
O
[=
=
=
Q
-+
@D
(=K
(7]
<
3
o
<
Z
[+))
3
@D
(72}
=
=
2
n
<
3
58
=)
o+
=
o
o
[
@,
3
(o}

se|je”sey

Thank you

Red Hat is the world’s leading provider of enterprise
open source software solutions. Award-winning support,
training, and consulting services make Red Hat a trusted

adviser to the Fortune 500.

m linkedin.com/company/red-hat n facebook.com/redhatinc

E youtube.com/user/RedHatVideos u twitter.com/RedHat

‘ RedHat

