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Why?

▶ You need to reboot to apply kernel patches.

▶ For stateless hosts this isn’t a big problem.
▶ It is a bigger problem for stateful hosts like database servers or

storage nodes.
▶ Also useful if you don’t control underlying workload.
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How?

▶ Allow handing over userspace memory over kexec.
▶ Applications aware of being kexec-ed can serialize/deserialize

state.
▶ For unaware applications, we can use Checkpoint/Restore in

Userspace (CRIU).
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System call vs file system?

▶ Two ways to implement the feature.
▶ Similar file systems already proposed in the past like

guestmemfs, pkram, pkernfs, etc.



System call

A new system call named kmho() with two modes of operation:
take over memory and hand over memory.

int kmho(unsigned int opcode, void *op);



System call

For handing over memory (before kexec), one can call the
KMHO_HANDOVER operation. op should be a struct
kmho_op_handover.

struct kmho_range_handover {
unsigned long base;
unsigned long length;

};

struct kmho_op_handover {
unsigned long key;
unsigned long num_ranges;
struct kmho_range_handover *ranges;

};



System call

An example call would look like:

struct kmho_range_handover range = {
.base = base,
.length = len,

};

struct kmho_op_handover op = {
.key = 0xabcd1234,
.num_ranges = 1,
.ranges = &range,

};
kmho(KMHO_HANDOVER, &op);



System call

For taking over memory (after kexec), one can call the
KMHO_TAKEOVER operation. op should be a struct
kmho_op_takeover.

struct kmho_range_takeover {
unsigned long base;
unsigned long len;
unsigned long remap_addr;

};

struct kmho_op_takeover {
unsigned long key;
unsigned long num_ranges;
struct kmho_range_takeover *ranges;

};



System call

An example call would look like:

struct kmho_range_takeover range = {
.base = base, // memory addr during handover
.length = len,
.remap_addr = new_addr, // New addr to map to

};

struct kmho_op_takeover op = {
.key = 0xabcd1234,
.num_ranges = 1,
.ranges = &range,

};
kmho(KMHO_TAKEOVER, &op);



File system

Mount file system:

mount -t khofs none /khofs

Mapping memory would look like:

fd = open("/khofs/my_mem", O_RDWR | O_CREAT | O_EXCL,
0600);

mem = mmap(NULL, length, PROT_READ | PROT_WRITE,
MAP_SHARED, fd, 0);

// Do stuff...
munmap(mem, length);
close(fd);



Comparison

FS:
▶ Naming and permissions easier.
▶ Can use same old APIs.

Syscall:
▶ Using syscall is simpler.
▶ Not possible to have anonymous memory with FS.
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Current state

▶ Implemented proof-of-concept using system call.
▶ Some hacky patches for CRIU to use this functionality.
▶ Plan to send out RFC soon.



Demo!

https://asciinema.org/a/3LZjzIe53Uvdhi7GenUxakrqy

https://asciinema.org/a/3LZjzIe53Uvdhi7GenUxakrqy
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Future extensions

▶ Handover swap contents across kexec.
▶ Handover page cache across kexec.



Thank you for attending the
talk!
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