
Userspace memory persistence over kexec

Pratyush Yadav <pratyush@kernel.org>

Amazon Web Services

Agenda

Why?

How?

Design

Current state

Future extensions

Agenda

Why?

How?

Design

Current state

Future extensions

Why?

▶ You need to reboot to apply kernel patches.

▶ For stateless hosts this isn’t a big problem.
▶ It is a bigger problem for stateful hosts like database servers or

storage nodes.
▶ Also useful if you don’t control underlying workload.

Why?

▶ You need to reboot to apply kernel patches.
▶ For stateless hosts this isn’t a big problem.

▶ It is a bigger problem for stateful hosts like database servers or
storage nodes.

▶ Also useful if you don’t control underlying workload.

Why?

▶ You need to reboot to apply kernel patches.
▶ For stateless hosts this isn’t a big problem.
▶ It is a bigger problem for stateful hosts like database servers or

storage nodes.

▶ Also useful if you don’t control underlying workload.

Why?

▶ You need to reboot to apply kernel patches.
▶ For stateless hosts this isn’t a big problem.
▶ It is a bigger problem for stateful hosts like database servers or

storage nodes.
▶ Also useful if you don’t control underlying workload.

Agenda

Why?

How?

Design

Current state

Future extensions

How?

▶ Allow handing over userspace memory over kexec.
▶ Applications aware of being kexec-ed can serialize/deserialize

state.
▶ For unaware applications, we can use Checkpoint/Restore in

Userspace (CRIU).

How?

ProcessOld Kernel

How?

ProcessOld Kernel kmho()

How?

Old Kernel

How?

Old Kernel

New Kernel

kexec()

How?

New Kernel

How?

New Kernel Processkmho()

How?

Process

Agenda

Why?

How?

Design

Current state

Future extensions

System call vs file system?

▶ Two ways to implement the feature.
▶ Similar file systems already proposed in the past like

guestmemfs, pkram, pkernfs, etc.

System call

A new system call named kmho() with two modes of operation:
take over memory and hand over memory.

int kmho(unsigned int opcode, void *op);

System call

For handing over memory (before kexec), one can call the
KMHO_HANDOVER operation. op should be a struct
kmho_op_handover.

struct kmho_range_handover {
unsigned long base;
unsigned long length;

};

struct kmho_op_handover {
unsigned long key;
unsigned long num_ranges;
struct kmho_range_handover *ranges;

};

System call

An example call would look like:

struct kmho_range_handover range = {
.base = base,
.length = len,

};

struct kmho_op_handover op = {
.key = 0xabcd1234,
.num_ranges = 1,
.ranges = &range,

};
kmho(KMHO_HANDOVER, &op);

System call

For taking over memory (after kexec), one can call the
KMHO_TAKEOVER operation. op should be a struct
kmho_op_takeover.

struct kmho_range_takeover {
unsigned long base;
unsigned long len;
unsigned long remap_addr;

};

struct kmho_op_takeover {
unsigned long key;
unsigned long num_ranges;
struct kmho_range_takeover *ranges;

};

System call

An example call would look like:

struct kmho_range_takeover range = {
.base = base, // memory addr during handover
.length = len,
.remap_addr = new_addr, // New addr to map to

};

struct kmho_op_takeover op = {
.key = 0xabcd1234,
.num_ranges = 1,
.ranges = &range,

};
kmho(KMHO_TAKEOVER, &op);

File system

Mount file system:

mount -t khofs none /khofs

Mapping memory would look like:

fd = open("/khofs/my_mem", O_RDWR | O_CREAT | O_EXCL,
0600);

mem = mmap(NULL, length, PROT_READ | PROT_WRITE,
MAP_SHARED, fd, 0);

// Do stuff...
munmap(mem, length);
close(fd);

Comparison

FS:
▶ Naming and permissions easier.
▶ Can use same old APIs.

Syscall:
▶ Using syscall is simpler.
▶ Not possible to have anonymous memory with FS.

Agenda

Why?

How?

Design

Current state

Future extensions

Current state

▶ Implemented proof-of-concept using system call.
▶ Some hacky patches for CRIU to use this functionality.
▶ Plan to send out RFC soon.

Demo!

https://asciinema.org/a/3LZjzIe53Uvdhi7GenUxakrqy

https://asciinema.org/a/3LZjzIe53Uvdhi7GenUxakrqy

Agenda

Why?

How?

Design

Current state

Future extensions

Future extensions

▶ Handover swap contents across kexec.
▶ Handover page cache across kexec.

Thank you for attending the
talk!

	Why?
	How?
	Design
	Current state
	Future extensions

