Userspace memory persistence over kexec

Pratyush Yadav <pratyush@kernel.org>

Amazon Web Services

Agenda

Why?

How?

Design
Current state

Future extensions

Agenda

Why?

Why?

» You need to reboot to apply kernel patches.

Why?

» You need to reboot to apply kernel patches.

> For stateless hosts this isn't a big problem.

Why?

» You need to reboot to apply kernel patches.
> For stateless hosts this isn't a big problem.

> |t is a bigger problem for stateful hosts like database servers or
storage nodes.

Why?

» You need to reboot to apply kernel patches.
> For stateless hosts this isn't a big problem.

> |t is a bigger problem for stateful hosts like database servers or
storage nodes.

> Also useful if you don’t control underlying workload.

Agenda

How?

How?

» Allow handing over userspace memory over kexec.

» Applications aware of being kexec-ed can serialize/deserialize
state.

» For unaware applications, we can use Checkpoint/Restore in
Userspace (CRIU).

How?

Old Kernel Process

How?

T

Old Kernel kmho(}—{ Process

.J)

How?

Old Kernel

How?

kexec(

Old Kernel

L]

How?

New Kernel

How?

H|

New Kernel kmho(Process

How?

Process

Agenda

Design

System call vs file system?

» Two ways to implement the feature.

» Similar file systems already proposed in the past like
guestmemfs, pkram, pkernfs, etc.

System call

A new system call named kmho () with two modes of operation:
take over memory and hand over memory.

int kmho(unsigned int opcode, void *op);

System call

For handing over memory (before kexec), one can call the
KMHO_HANDOVER operation. op should be a struct
kmho_op_handover.

struct kmho_range_handover {
unsigned long base;
unsigned long length;
I

struct kmho_op_handover {
unsigned long key;
unsigned long num_ranges;
struct kmho_range_handover *ranges;

System call

An example call would look like:

struct kmho_range_handover range = {
.base = base,
.length = len,

}s

struct kmho_op_handover op = {
.key = Oxabcd1234,
.num_ranges = 1,
.ranges = &range,

s

kmho (KMHO_HANDOVER, &op) ;

System call

For taking over memory (after kexec), one can call the
KMHO_TAKEQVER operation. op should be a struct
kmho_op_takeover.

struct kmho_range_takeover {
unsigned long base;
unsigned long len;
unsigned long remap_addr;

};

struct kmho_op_takeover {
unsigned long key;
unsigned long num_ranges;
struct kmho_range_takeover *ranges;

System call

An example call would look like:

struct kmho_range_takeover range = {
.base = base, // memory addr during handover
.length = len,
.remap_addr = new_addr, // New addr to map to

};

struct kmho_op_takeover op = {
.key = Oxabcd1234,
.num_ranges = 1,
.ranges = &range,

3

kmho (KMHO_TAKEQOVER, &op);

File system

Mount file system:

mount -t khofs none /khofs

Mapping memory would look like:

fd = open("/khofs/my_mem", O_RDWR | O_CREAT | O_EXCL,
0600) ;

mem = mmap(NULL, length, PROT_READ | PROT_WRITE,
MAP_SHARED, fd, 0);

// Do stuff...

munmap (mem, length);

close(fd);

Comparison

FS:
» Naming and permissions easier.
» Can use same old APIs.
Syscall:
» Using syscall is simpler.

» Not possible to have anonymous memory with FS.

Agenda

Current state

Current state

» Implemented proof-of-concept using system call.
» Some hacky patches for CRIU to use this functionality.
» Plan to send out RFC soon.

Demo!

https://asciinema.org/a/3LZjzIe53Uvdhi7GenUxakrqy

https://asciinema.org/a/3LZjzIe53Uvdhi7GenUxakrqy

Agenda

Future extensions

Future extensions

» Handover swap contents across kexec.

» Handover page cache across kexec.

Thank you for attending the
talkl

	Why?
	How?
	Design
	Current state
	Future extensions

