
Program verification for the Linux kernel:
Potential costs and benefits

Julia Lawall, Keisuke Nishimura, Jean-Pierre Lozi
Inria
September 18, 2024

1

The Linux kernel

• Seems reliable...

But actually it is full of bugs.

• Some fit well-known patterns:
– missing free, use after free, dereference of NULL, missing unlock,

misplaced memory barrier, etc.

– Existing tools handle these issues more or less well
(Smatch, Coccinelle, Coverity, etc.)

• Some depend on an algorithm, and are completely context specific:
– Maybe verification can help identify these bugs?

2

The Linux kernel

• Seems reliable... But actually it is full of bugs.

• Some fit well-known patterns:
– missing free, use after free, dereference of NULL, missing unlock,

misplaced memory barrier, etc.

– Existing tools handle these issues more or less well
(Smatch, Coccinelle, Coverity, etc.)

• Some depend on an algorithm, and are completely context specific:
– Maybe verification can help identify these bugs?

2

The Linux kernel

• Seems reliable... But actually it is full of bugs.

• Some fit well-known patterns:
– missing free, use after free, dereference of NULL, missing unlock,

misplaced memory barrier, etc.

– Existing tools handle these issues more or less well
(Smatch, Coccinelle, Coverity, etc.)

• Some depend on an algorithm, and are completely context specific:
– Maybe verification can help identify these bugs?

2

The Linux kernel

• Seems reliable... But actually it is full of bugs.

• Some fit well-known patterns:
– missing free, use after free, dereference of NULL, missing unlock,

misplaced memory barrier, etc.

– Existing tools handle these issues more or less well
(Smatch, Coccinelle, Coverity, etc.)

• Some depend on an algorithm, and are completely context specific:

– Maybe verification can help identify these bugs?

2

The Linux kernel

• Seems reliable... But actually it is full of bugs.

• Some fit well-known patterns:
– missing free, use after free, dereference of NULL, missing unlock,

misplaced memory barrier, etc.

– Existing tools handle these issues more or less well
(Smatch, Coccinelle, Coverity, etc.)

• Some depend on an algorithm, and are completely context specific:
– Maybe verification can help identify these bugs?

2

Formal verification

Basic idea:

• Write specifications describing expected code behavior.

• Use tools to verify that the code respects the specifications.

Specifications are a form of documentation, with tool support.

3

Formal verification

Basic idea:

• Write specifications describing expected code behavior.

• Use tools to verify that the code respects the specifications.

Specifications are a form of documentation, with tool support.

3

Costs? Benefits?

Positive:

• Thinking about what to prove can highlight inconsistencies, bugs, and
missed optimization opportunities.

• Specifications provide an unambiguous, consistent description of what the code
does.

Negative:

• Creating specifications is hard.

• Can we hope to maintain them? (cognitive overload)

• No magic bullet: The specifications could even be wrong!

4

Costs? Benefits?

Positive:

• Thinking about what to prove can highlight inconsistencies, bugs, and
missed optimization opportunities.

• Specifications provide an unambiguous, consistent description of what the code
does.

Negative:

• Creating specifications is hard.

• Can we hope to maintain them? (cognitive overload)

• No magic bullet: The specifications could even be wrong!

4

This talk

A thought experiment

• Not, hmmph, I don’t want to write a bunch a formulas.

• But rather, what would happen if we did?

5

This talk

A thought experiment

• Not, hmmph, I don’t want to write a bunch a formulas.

• But rather, what would happen if we did?

5

This talk

A thought experiment

• Not, hmmph, I don’t want to write a bunch a formulas.

• But rather, what would happen if we did?

5

A simple example (thanks to Krister Walfridsson)

static void swap(int *p, int *q) {
int tmp = *p;
*p = *q;
*q = tmp;

}

Properties to verify:

• p and q are readable and writeable.
• The final p value is the original q value.
• The final q value is the original p value.

6

A simple example (thanks to Krister Walfridsson)

static void swap(int *p, int *q) {
int tmp = *p;
*p = *q;
*q = tmp;

}

Properties to verify:

• p and q are readable and writeable.
• The final p value is the original q value.
• The final q value is the original p value.

6

The tool we use: Frama-C

Approach:

• Annotate source code with pre conditions and post conditions.
– Pre conditions describe the states in which the function can be called.

– Post conditions describe the state after calling the function in those states.

• Frama-C analyzes the code, line by line, and determines the conditions needed to
establish the post conditions based on the preconditions.

• A SMT solver automatically proves that the conditions are satisfied.

7

The tool we use: Frama-C

Approach:

• Annotate source code with pre conditions and post conditions.
– Pre conditions describe the states in which the function can be called.

– Post conditions describe the state after calling the function in those states.

• Frama-C analyzes the code, line by line, and determines the conditions needed to
establish the post conditions based on the preconditions.

• A SMT solver automatically proves that the conditions are satisfied.

7

The tool we use: Frama-C

Approach:

• Annotate source code with pre conditions and post conditions.
– Pre conditions describe the states in which the function can be called.

– Post conditions describe the state after calling the function in those states.

• Frama-C analyzes the code, line by line, and determines the conditions needed to
establish the post conditions based on the preconditions.

• A SMT solver automatically proves that the conditions are satisfied.

7

Our pre and post conditions, in Frama-C notation

Preconditions:

• p and q are readable and writeable.
requires \valid(p);
requires \valid(q);

Postconditions:

• The final p value is the original q value.
ensures *p == \old(*q);

• The final q value is the original p value.
ensures *q == \old(*p);

8

Our pre and post conditions, in Frama-C notation

Preconditions:

• p and q are readable and writeable.
requires \valid(p);
requires \valid(q);

Postconditions:

• The final p value is the original q value.
ensures *p == \old(*q);

• The final q value is the original p value.
ensures *q == \old(*p);

8

Our pre and post conditions, in Frama-C notation

Preconditions:

• p and q are readable and writeable.
requires \valid(p);
requires \valid(q);

Postconditions:

• The final p value is the original q value.
ensures *p == \old(*q);

• The final q value is the original p value.
ensures *q == \old(*p);

8

Putting it all together

/*@
requires \valid(p);
requires \valid(q);
assigns *p, *q;
ensures *p == \old(*q);
ensures *q == \old(*p);
*/
static void swap(int *p, int *q) {

int tmp = *p;
*p = *q;
*q = tmp;

}

9

Checking it with Frama-C

> frama-c -wp -wp-rte -wp-prover=z3 swap.c
[kernel] Parsing swap.c (with preprocessing)
[rte:annot] annotating function swap
[wp] 8 goals scheduled
[wp] Proved goals: 10 / 10

Terminating: 1
Unreachable: 1
Qed: 5
Z3 4.12.2: 3 (20ms-40ms)

10

Attacking the Linux kernel task scheduler

What we do:

• Use the original C source code for the function of interest.
• Write dummy definitions in C for external functions, as needed.
• Use Frama-C to manage the proving process.

Focus on the algorithm:

• No consideration of concurrency.
• No consideration of hidden memory issues

(aliasing, null pointers, use after free, etc.).
• These are hard issues, but developers can make mistakes without them.

11

Attacking the Linux kernel task scheduler

What we do:

• Use the original C source code for the function of interest.
• Write dummy definitions in C for external functions, as needed.
• Use Frama-C to manage the proving process.

Focus on the algorithm:

• No consideration of concurrency.
• No consideration of hidden memory issues

(aliasing, null pointers, use after free, etc.).

• These are hard issues, but developers can make mistakes without them.

11

Attacking the Linux kernel task scheduler

What we do:

• Use the original C source code for the function of interest.
• Write dummy definitions in C for external functions, as needed.
• Use Frama-C to manage the proving process.

Focus on the algorithm:

• No consideration of concurrency.
• No consideration of hidden memory issues

(aliasing, null pointers, use after free, etc.).
• These are hard issues, but developers can make mistakes without them.

11

A case study: should_we_balance

Goal:

• Should a core should try to steal tasks during load balancing?

Starting point:

• Patch first proposed in August 2013.
• Extracted from scattered existing code.
• First patch was buggy.
• First released in Linux v3.12.

Subsequent history:

• 10 variants over time (+1 proposed as a result of this work).
• Several recent optimizations.

12

Overview of the should_we_balance code

Input:

• The CPU trying to steal.
• Some information about the set of CPUs participating in load balancing.

Action:

1. Elect an idle CPU that is allowed to steal.
2. If none, elect a default CPU.
3. Return true if and only if the elected CPU is the one trying to steal.

Goal: Only one non newly idle CPU steals at a time.

13

Overview of the should_we_balance code

Input:

• The CPU trying to steal.
• Some information about the set of CPUs participating in load balancing.

Action:

1. Elect an idle CPU that is allowed to steal.
2. If none, elect a default CPU.
3. Return true if and only if the elected CPU is the one trying to steal.

Goal: Only one non newly idle CPU steals at a time.

13

Overview of the should_we_balance code

Input:

• The CPU trying to steal.
• Some information about the set of CPUs participating in load balancing.

Action:

1. Elect an idle CPU that is allowed to steal.
2. If none, elect a default CPU.
3. Return true if and only if the elected CPU is the one trying to steal.

Goal: Only one non newly idle CPU steals at a time.

13

The original definition

static int should_we_balance(struct lb_env *env) {
struct sched_group *sg = env->sd->groups;
struct cpumask *sg_cpus, *sg_mask;
int cpu, balance_cpu = -1;

if (env->idle == CPU_NEWLY_IDLE)
return 1;

sg_cpus = sched_group_cpus(sg);
sg_mask = sched_group_mask(sg);
for_each_cpu_and(cpu, sg_cpus, env->cpus) {

if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
continue;

balance_cpu = cpu;
break;

}
if (balance_cpu == -1)

balance_cpu = group_balance_cpu(sg);
return balance_cpu != env->dst_cpu; // != should be ==

}

14

Input: env describes the core that wants to steal tasks

static int should_we_balance(struct lb_env *env) {
struct sched_group *sg = env->sd->groups;
struct cpumask *sg_cpus, *sg_mask;
int cpu, balance_cpu = -1;

if (env->idle == CPU_NEWLY_IDLE)
return 1;

sg_cpus = sched_group_cpus(sg);
sg_mask = sched_group_mask(sg);
for_each_cpu_and(cpu, sg_cpus, env->cpus) {

if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
continue;

balance_cpu = cpu;
break;

}
if (balance_cpu == -1)

balance_cpu = group_balance_cpu(sg);
return balance_cpu != env->dst_cpu; // != should be ==

}

15

If the core is newly idle, it can always steal

static int should_we_balance(struct lb_env *env) {
struct sched_group *sg = env->sd->groups;
struct cpumask *sg_cpus, *sg_mask;
int cpu, balance_cpu = -1;

if (env->idle == CPU_NEWLY_IDLE)
return 1;

sg_cpus = sched_group_cpus(sg);
sg_mask = sched_group_mask(sg);
for_each_cpu_and(cpu, sg_cpus, env->cpus) {

if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
continue;

balance_cpu = cpu;
break;

}
if (balance_cpu == -1)

balance_cpu = group_balance_cpu(sg);
return balance_cpu != env->dst_cpu; // != should be ==

}

16

Otherwise, find the core that is allowed to steal

static int should_we_balance(struct lb_env *env) {
struct sched_group *sg = env->sd->groups;
struct cpumask *sg_cpus, *sg_mask;
int cpu, balance_cpu = -1;

if (env->idle == CPU_NEWLY_IDLE)
return 1;

sg_cpus = sched_group_cpus(sg);
sg_mask = sched_group_mask(sg);
for_each_cpu_and(cpu, sg_cpus, env->cpus) {

if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
continue;

balance_cpu = cpu;
break;

}
if (balance_cpu == -1)

balance_cpu = group_balance_cpu(sg);
return balance_cpu != env->dst_cpu; // != should be ==

}

17

Is the core that is allowed to steal the current one?

static int should_we_balance(struct lb_env *env) {
struct sched_group *sg = env->sd->groups;
struct cpumask *sg_cpus, *sg_mask;
int cpu, balance_cpu = -1;

if (env->idle == CPU_NEWLY_IDLE)
return 1;

sg_cpus = sched_group_cpus(sg);
sg_mask = sched_group_mask(sg);
for_each_cpu_and(cpu, sg_cpus, env->cpus) {

if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
continue;

balance_cpu = cpu;
break;

}
if (balance_cpu == -1)

balance_cpu = group_balance_cpu(sg);
return balance_cpu != env->dst_cpu; // != should be ==

}

18

Initial version (verification expert?): pre and post conditions

/*@
... // data validity , no side effects

behavior newly_idle:
assumes env->idle == CPU_NEWLY_IDLE;
ensures \result;

behavior not_newly_idle1:
assumes env->idle != CPU_NEWLY_IDLE;
assumes \exists integer i; relevant(i, env) && idle_cpu(i);
ensures \forall integer i;

relevant(i, env) ==> idle_cpu(i) ==>
(\forall integer j; 0 <= j < i ==> relevant(j, env) ==> !idle_cpu(j)) ==>
(\result <==> env->dst_cpu != i);

behavior not_newly_idle2:
assumes env->idle != CPU_NEWLY_IDLE;
assumes \forall integer i; relevant(i, env) ==> !idle_cpu(i);
ensures \result <==> group_balance_cpu(env->sd->groups) != env->dst_cpu;

complete behaviors;
disjoint behaviors;
*/

19

Initial version (verification expert?): loop invariants

static int should_we_balance(struct lb_env *env)
{

...
sg_cpus = sched_group_cpus(sg);
sg_mask = sched_group_mask(sg);
/*@

loop invariant 0 <= cpu <= small_cpumask_bits;
loop invariant \forall integer j; 0 <= j < cpu ==> relevant(j, env) ==> !idle_cpu(j);
loop assigns cpu;
loop variant small_cpumask_bits - cpu;

*/
for_each_cpu_and(cpu, sg_cpus, env->cpus) {

if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
continue;

balance_cpu = cpu;
break;

}
...

}

On our test machine, Frama-C proves this in under 1 minute.

20

Initial version (verification expert?): loop invariants

static int should_we_balance(struct lb_env *env)
{

...
sg_cpus = sched_group_cpus(sg);
sg_mask = sched_group_mask(sg);
/*@

loop invariant 0 <= cpu <= small_cpumask_bits;
loop invariant \forall integer j; 0 <= j < cpu ==> relevant(j, env) ==> !idle_cpu(j);
loop assigns cpu;
loop variant small_cpumask_bits - cpu;

*/
for_each_cpu_and(cpu, sg_cpus, env->cpus) {

if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
continue;

balance_cpu = cpu;
break;

}
...

}

On our test machine, Frama-C proves this in under 1 minute.

20

Problem: The code evolves over time

Commit id Date Release Impact
0 23f0d2093c78 Aug. 2013 – create the function
1 b0cff9d88ce2 Sep. 2013 v3.12 replace != by ==
2 af218122b103 May 2017 – eliminate a redundant function call
3 e5c14b1fb892 May 2017 v4.13 rename a function
4 024c9d2faebd Oct. 2017 v4.14 check validity of the stealing CPU
5 97fb7a0a8944 Mar. 2018 v4.17 improve comments
6 64297f2b03cc Apr. 2020 v5.8 return early on finding an idle core
7 792b9f65a568 Jun. 2022 v6.0 abort if tasks are detected on a newly idle CPU
8 b1bfeab9b002 Jul. 2023 – prefer fully idle cores
9 f8858d96061f Sep. 2023 v6.6 remove non-idle hyperthreads from the CPU mask
10 6d7e4782bcf5 Oct. 2023 v6.8 change a condition of the selection algorithm

Red versions contain bugs.

21

Question:
As the code changes,
can developers update the specifications accordingly?

22

An idea

• For optimizations, the overall input-output behavior should not change.

• Maybe we could define pre and post conditions for one version and
reuse them on new versions?

23

An idea

• For optimizations, the overall input-output behavior should not change.

• Maybe we could define pre and post conditions for one version and
reuse them on new versions?

23

Change types and proof impact: No impact

Changes (mostly capitalization) in comments clearly have no impact on the proof.

Code changes may also have no impact on the proof.

24

Change types and proof impact: No impact

Changes (mostly capitalization) in comments clearly have no impact on the proof.

Code changes may also have no impact on the proof.
static int should_we_balance(struct lb_env *env)
{

struct sched_group *sg = env->sd->groups;
- int cpu, balance_cpu = -1;
+ int cpu;

...
for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {

if (!idle_cpu(cpu))
continue;

- balance_cpu = cpu;
- break;
+ return cpu == env->dst_cpu;

}
- if (balance_cpu == -1)
- balance_cpu = group_balance_cpu(sg);
- return balance_cpu == env->dst_cpu;
+ return group_balance_cpu(sg) == env->dst_cpu;
}

24

Change types and proof impact: new conditions

static int should_we_balance(struct lb_env *env)
{

struct sched_group *sg = env->sd->groups;
int cpu, balance_cpu = -1;

+ if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
+ return 0;

if (env->idle == CPU_NEWLY_IDLE)
return 1;

for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
if (!idle_cpu(cpu))

continue;
balance_cpu = cpu;
break;

}
if (balance_cpu == -1)

balance_cpu = group_balance_cpu(sg);
return balance_cpu == env->dst_cpu;

}

25

Change types and proof impact: new conditions

+behavior race_condition:
+ assumes !env->cpus->bits[env->dst_cpu];
+ ensures !\result;
+
behavior newly_idle:

assumes env->idle == CPU_NEWLY_IDLE;
+ assumes env->cpus->bits[env->dst_cpu];

ensures \result;

behavior not_newly_idle1:
assumes env->idle != CPU_NEWLY_IDLE;

+ assumes env->cpus->bits[env->dst_cpu];
assumes \exists integer i; relevant(i, env) && idle_cpu(i);
ensures \forall integer i;

relevant(i, env) ==> idle_cpu(i) ==>
(\forall integer j; 0 <= j < i ==> relevant(j, env) ==> !idle_cpu(j)) ==>
(\result <==> env->dst_cpu == i);

behavior not_newly_idle2:
assumes env->idle != CPU_NEWLY_IDLE;

+ assumes env->cpus->bits[env->dst_cpu];
assumes \forall integer i; relevant(i, env) ==> !idle_cpu(i);
ensures \result <==> group_balance_cpu(env->sd->groups) == env->dst_cpu;

26

Change types and proof impact: more invasive changes

for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
if (!idle_cpu(cpu))

continue;
+ if (!(env->sd->flags & SD_SHARE_CPUCAPACITY) && !is_core_idle(cpu)) {
+ if (idle_smt == -1)
+ idle_smt = cpu;
+ continue;
+ }

return cpu == env->dst_cpu;
}

• Sensitive to hyperthreads.
• Avoid a core whose hyperthread is occupied, but keep it as a fallback.

27

Change types and proof impact: more invasive changes

for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
if (!idle_cpu(cpu))

continue;
+ if (!(env->sd->flags & SD_SHARE_CPUCAPACITY) && !is_core_idle(cpu)) {
+ if (idle_smt == -1)
+ idle_smt = cpu;
+ continue;
+ }

return cpu == env->dst_cpu;
}

Specification change:
/*@
loop invariant 0 <= cpu <= small_cpumask_bits;

- loop invariant \forall integer j; 0 <= j < cpu ==> relevant(j, env) ==> !idle_cpu(j);
- loop assigns cpu;
+ loop invariant env->sd->flags & SD_SHARE_CPUCAPACITY ==> idle_smt == -1;
+ loop invariant idle_smt == -1 ==> \forall integer j; 0 <= j < cpu ==> relevant(j, env) ==> !idle_cpu(j);
+ loop invariant idle_smt != -1 ==> 0 <= idle_smt < cpu && relevant(idle_smt, env) && idle_cpu(idle_smt);
+ loop invariant idle_smt != -1 ==> \forall integer j; 0 <= j < idle_smt ==> relevant(j, env) ==> !idle_cpu(j);
+ loop invariant idle_smt != -1 ==> \forall integer j; idle_smt <= j < cpu ==> relevant(j, env) ==> !idle_core(j);
+ loop assigns cpu, idle_smt;

loop variant small_cpumask_bits - cpu;
*/ 28

Change types and proof impact: invasive changes
+ cpumask_copy(swb_cpus, group_balance_mask(sg));
- for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
+ for_each_cpu_and(cpu, swb_cpus, env->cpus) {

if (!idle_cpu(cpu))
continue;

if (!(env->sd->flags & SD_SHARE_CPUCAPACITY) && !is_core_idle(cpu)) {
if (idle_smt == -1)

idle_smt = cpu;
+#ifdef CONFIG_SCHED_SMT
+ cpumask_andnot(swb_cpus, swb_cpus, cpu_smt_mask(cpu));
+#endif

continue;
}
return cpu == env->dst_cpu;

}

cpumask_andnot writes into its first argument.
Such side effects impact the loop invariants.

The first two arguments to cpumask_andnot are aliases.

Months of work...
29

Change types and proof impact: invasive changes
+ cpumask_copy(swb_cpus, group_balance_mask(sg));
- for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
+ for_each_cpu_and(cpu, swb_cpus, env->cpus) {

if (!idle_cpu(cpu))
continue;

if (!(env->sd->flags & SD_SHARE_CPUCAPACITY) && !is_core_idle(cpu)) {
if (idle_smt == -1)

idle_smt = cpu;
+#ifdef CONFIG_SCHED_SMT
+ cpumask_andnot(swb_cpus, swb_cpus, cpu_smt_mask(cpu));
+#endif

continue;
}
return cpu == env->dst_cpu;

}

• cpumask_andnot writes into its first argument.
– Such side effects impact the loop invariants.

The first two arguments to cpumask_andnot are aliases.

Months of work...
29

Change types and proof impact: invasive changes
+ cpumask_copy(swb_cpus, group_balance_mask(sg));
- for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
+ for_each_cpu_and(cpu, swb_cpus, env->cpus) {

if (!idle_cpu(cpu))
continue;

if (!(env->sd->flags & SD_SHARE_CPUCAPACITY) && !is_core_idle(cpu)) {
if (idle_smt == -1)

idle_smt = cpu;
+#ifdef CONFIG_SCHED_SMT
+ cpumask_andnot(swb_cpus, swb_cpus, cpu_smt_mask(cpu));
+#endif

continue;
}
return cpu == env->dst_cpu;

}

• cpumask_andnot writes into its first argument.
– Such side effects impact the loop invariants.

• The first two arguments to cpumask_andnot are aliases.

Months of work...
29

Change types and proof impact: invasive changes
+ cpumask_copy(swb_cpus, group_balance_mask(sg));
- for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
+ for_each_cpu_and(cpu, swb_cpus, env->cpus) {

if (!idle_cpu(cpu))
continue;

if (!(env->sd->flags & SD_SHARE_CPUCAPACITY) && !is_core_idle(cpu)) {
if (idle_smt == -1)

idle_smt = cpu;
+#ifdef CONFIG_SCHED_SMT
+ cpumask_andnot(swb_cpus, swb_cpus, cpu_smt_mask(cpu));
+#endif

continue;
}
return cpu == env->dst_cpu;

}

• cpumask_andnot writes into its first argument.
– Such side effects impact the loop invariants.

• The first two arguments to cpumask_andnot are aliases.

Months of work...
29

Bug found

An older behavior:
behavior not_newly_idle1:

assumes env->idle != CPU_NEWLY_IDLE;
assumes env->cpus->bits[env->dst_cpu];
assumes \exists integer i; relevant(i, env) && idle_cpu(i);
ensures \forall integer i; relevant(i, env) ==> idle_cpu(i) ==>

(\forall integer j; 0 <= j < i ==> relevant(j, env) ==> !idle_cpu(j)) ==>
(\result <==> env->dst_cpu == i);

A newer behavior: (bug introduced)
behavior not_newly_idle1b:

assumes env->idle != CPU_NEWLY_IDLE;
assumes env->cpus->bits[env->dst_cpu];
assumes !(env->sd->flags & SD_SHARE_CPUCAPACITY);
assumes \forall integer i; relevant(i, env) ==> !idle_core(i);
assumes \exists integer i; relevant(i, env) && idle_cpu(i);
ensures \forall integer i; relevant(i, env) ==> idle_cpu(i) ==>

(\forall integer j; 0 <= j < i ==> relevant(j, env) ==> !idle_cpu(j)) ==>
(\result ==> (env->dst_cpu == i || env->dst_cpu == group_balance_cpu(env->sd->groups)));

ensures \forall integer i; relevant(i, env) ==> idle_cpu(i) ==>
(\forall integer j; 0 <= j < i ==> relevant(j, env) ==> !idle_cpu(j)) ==>
(env->dst_cpu == i ==> \result);

30

The buggy code
static int should_we_balance(struct lb_env *env)
{

struct cpumask *swb_cpus = this_cpu_cpumask_var_ptr(should_we_balance_tmpmask);
struct sched_group *sg = env->sd->groups;
int cpu, idle_smt = -1;

[...]
if (env->idle == CPU_NEWLY_IDLE) {

[...]
return 1;

}
cpumask_copy(swb_cpus, group_balance_mask(sg));
for_each_cpu_and(cpu, swb_cpus, env->cpus) {

if (!idle_cpu(cpu))
continue;

if (!(env->sd->flags & SD_SHARE_CPUCAPACITY) && !is_core_idle(cpu)) {
if (idle_smt == -1)

idle_smt = cpu;
cpumask_andnot(swb_cpus, swb_cpus, cpu_smt_mask(cpu));
continue;

}
return cpu == env->dst_cpu;

}
if (idle_smt == env->dst_cpu)

return true;
return group_balance_cpu(sg) == env->dst_cpu;

} 31

Assessment

Commit id Date Release Impact
0 23f0d2093c78 Aug. 2013 – create the function
1 b0cff9d88ce2 Sep. 2013 v3.12 replace != by ==
2 af218122b103 May 2017 – eliminate a redundant function call
3 e5c14b1fb892 May 2017 v4.13 rename a function
4 024c9d2faebd Oct. 2017 v4.14 check validity of the stealing CPU
5 97fb7a0a8944 Mar. 2018 v4.17 improve comments
6 64297f2b03cc Apr. 2020 v5.8 return early on finding an idle core
7 792b9f65a568 Jun. 2022 v6.0 abort if tasks are detected on a newly idle CPU
8 b1bfeab9b002 Jul. 2023 – prefer fully idle cores
9 f8858d96061f Sep. 2023 v6.6 remove non-idle hyperthreads from the CPU mask
10 6d7e4782bcf5 Oct. 2023 v6.8 change a condition of the selection algorithm

• Changes 1-7 easy to verify.

• Changes 8 and 9 introduced challenges, but revealed a bug and a missed
optimization opportunity

32

Assessment

Commit id Date Release Impact
0 23f0d2093c78 Aug. 2013 – create the function
1 b0cff9d88ce2 Sep. 2013 v3.12 replace != by ==
2 af218122b103 May 2017 – eliminate a redundant function call
3 e5c14b1fb892 May 2017 v4.13 rename a function
4 024c9d2faebd Oct. 2017 v4.14 check validity of the stealing CPU
5 97fb7a0a8944 Mar. 2018 v4.17 improve comments
6 64297f2b03cc Apr. 2020 v5.8 return early on finding an idle core
7 792b9f65a568 Jun. 2022 v6.0 abort if tasks are detected on a newly idle CPU
8 b1bfeab9b002 Jul. 2023 – prefer fully idle cores
9 f8858d96061f Sep. 2023 v6.6 remove non-idle hyperthreads from the CPU mask
10 6d7e4782bcf5 Oct. 2023 v6.8 change a condition of the selection algorithm

• Changes 1-7 easy to verify.
• Changes 8 and 9 introduced challenges, but revealed a bug and a missed

optimization opportunity 32

Going forward

Key observation so far:

• Complexities in the code are magnified in the specifications,
exploding the proof time and effort.

Some tools that might help:
• Tools to isolate relevant code:

– Collect dependencies.
• Tools to facilitate writing specifications:

– Collect aliases.
– Construct invariants for specific loop types.

• Tools to help react to code changes:
– Distinguish easy and challenging code changes.
– Identify and interpret source code bugs.

https://gitlab.inria.fr/lawall/swb_artifact 33

