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Scheduling



  

What is a scheduler?
● Kernel component that determine:

– where each task needs to run
– when each task needs to run
– how long each task needs to run



  

Why does scheduling matter?
● Performance

– Specific workload
– Specific hardware topology

● Security
– Isolation

● Energy Efficiency
– EAS



  

Scheduling in Linux
● One scheduler to rule them all

– CFS < v6.6
– EEVDF >= v6.6

● Really difficult to conduct experiments
● Really difficult to upstream changes
● Development not easily accessible



  

sched_ext
● Allows to implement schedulers as BPF programs

● Dynamically load/unload them at run-time

● BPF guarantees safety (no kernel panics, memory 
bugs, etc.)

● sched_ext watchdog prevents deadlock / starvation



  

sched_ext: pros / cons
● Pros

– Ease of experimentation
– Fast edit/compile/test iteration
– Safety (bugs have almost zero impact)

● Cons
– Limited programming model
– BPF verifier complexity
– Kernel restrictions (no user-space libs, no floating point, etc.)



  

Scheduling in user space



  

User-space scheduling
● eBPF + sched_ext

– Channel scheduling events to user-space

● A scheduler becomes a regular user-space program

● See also
– ghOSt framework (Google)



  

User-space scheduling: pros / cons
● Pros

– Unlock all user-space languages
– Access to a large pool of user-space libraries
– Access to user-space services
– Observability

● Cons
– Overhead
– Fragmentation / user support



  

User-space scheduler in Rust



  

scx_rustland
● A fully functional Linux scheduler based on sched_ext
● Written in Rust (nothing to do with Rust-for-Linux)
● The scheduler runs as regular user-space process

– 100% of the scheduling decisions done in user space
● vruntime scheduler that prioritizes interactive tasks



  

Playing Terraria while building the kernel



  

Goal of scx_rustland
● scx_rustland is a proof of concept to show that 

user-space scheduling is a viable option

● Despite the overhead we can achieve performance 
close to in-kernel scheduling

● Make scheduling development more accessible



  

User-space scheduling framework



  

scx_rustland_core
● Abstraction layer over sched_ext

● Interface between BPF/sched_ext and user space

● Kernel scheduler is a user-space process

● Can be used in any Rust project

● GPLv2 license



  

BPF User spaceKernel

scx_rustland_core architecture

scx_rustland_core 
(backend)

libbpf
BPF_MAP_TYPE_RINGBUF

sched_ext

BPF_MAP_TYPE_USER_RINGBUF

libbpf-rs
scx callbacks

(enqueue, dispatch)

scx_rustland_core
(frontend)

User-space scheduler



  

scx_rustland_core API
● struct BpfScheduler

– Task management
● dequeue_task(&mut self) -> Result<Option<QueuedTask>, i32>

– consume a task that wants to run
● select_cpu(&mut self, pid: i32, cpu: i32, flags: u64) -> i32

– find an idle CPU for the task
● dispatch_task(&mut self, task: &DispatchedTask) -> Result<(), Error>

– dispatch a task
– Completion notification

● notify_complete(&mut self, nr_pending: u64)
– notify BPF component that some tasks have been dispatched



  

Results



  

Gaming while building the kernel
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User-space overhead
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Conclusion



  

Benefits of user-space scheduling
● Lower the barrier of scheduling development

● Faster edit/compile/test iterations

● Useful to quickly prototype and test crazy ideas

● Better debugging and observability



  

Future plans
● Standardize the user-space framework APIs
● More topology awareness APIs

– Cache, GPU, ...
● Introduce concept of scheduling domains

– Allow to define domains (via cpumask)
● More modularization
● Auto-generate schedulers

– Profile-based schedulers? AI?
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Questions?
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