

Crafting a Linux kernel scheduler
that runs in user-space using Rust

Andrea Righi
Linux Plumbers Conference 2024 | Vienna

Scheduling

What is a scheduler?
● Kernel component that determine:

– where each task needs to run
– when each task needs to run
– how long each task needs to run

Why does scheduling matter?
● Performance

– Specific workload
– Specific hardware topology

● Security
– Isolation

● Energy Efficiency
– EAS

Scheduling in Linux
● One scheduler to rule them all

– CFS < v6.6
– EEVDF >= v6.6

● Really difficult to conduct experiments
● Really difficult to upstream changes
● Development not easily accessible

sched_ext
● Allows to implement schedulers as BPF programs

● Dynamically load/unload them at run-time

● BPF guarantees safety (no kernel panics, memory
bugs, etc.)

● sched_ext watchdog prevents deadlock / starvation

sched_ext: pros / cons
● Pros

– Ease of experimentation
– Fast edit/compile/test iteration
– Safety (bugs have almost zero impact)

● Cons
– Limited programming model
– BPF verifier complexity
– Kernel restrictions (no user-space libs, no floating point, etc.)

Scheduling in user space

User-space scheduling
● eBPF + sched_ext

– Channel scheduling events to user-space

● A scheduler becomes a regular user-space program

● See also
– ghOSt framework (Google)

User-space scheduling: pros / cons
● Pros

– Unlock all user-space languages
– Access to a large pool of user-space libraries
– Access to user-space services
– Observability

● Cons
– Overhead
– Fragmentation / user support

User-space scheduler in Rust

scx_rustland
● A fully functional Linux scheduler based on sched_ext
● Written in Rust (nothing to do with Rust-for-Linux)
● The scheduler runs as regular user-space process

– 100% of the scheduling decisions done in user space
● vruntime scheduler that prioritizes interactive tasks

Playing Terraria while building the kernel

Goal of scx_rustland
● scx_rustland is a proof of concept to show that

user-space scheduling is a viable option

● Despite the overhead we can achieve performance
close to in-kernel scheduling

● Make scheduling development more accessible

User-space scheduling framework

scx_rustland_core
● Abstraction layer over sched_ext

● Interface between BPF/sched_ext and user space

● Kernel scheduler is a user-space process

● Can be used in any Rust project

● GPLv2 license

BPF User spaceKernel

scx_rustland_core architecture

scx_rustland_core
(backend)

libbpf
BPF_MAP_TYPE_RINGBUF

sched_ext

BPF_MAP_TYPE_USER_RINGBUF

libbpf-rs
scx callbacks

(enqueue, dispatch)

scx_rustland_core
(frontend)

User-space scheduler

scx_rustland_core API
● struct BpfScheduler

– Task management
● dequeue_task(&mut self) -> Result<Option<QueuedTask>, i32>

– consume a task that wants to run
● select_cpu(&mut self, pid: i32, cpu: i32, flags: u64) -> i32

– find an idle CPU for the task
● dispatch_task(&mut self, task: &DispatchedTask) -> Result<(), Error>

– dispatch a task
– Completion notification

● notify_complete(&mut self, nr_pending: u64)
– notify BPF component that some tasks have been dispatched

Results

Gaming while building the kernel

EEVDF

scx_rustland

0 10 20 30 40 50 60 70

Average fps

fps (overcommitted)

fps (busy)

fps (idle)

EEVDF

scx_rustland

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

standard deviation

fps (overcommitted)

fps (busy)

fps (idle)

User-space overhead

stress-ng cpu-cache-mem
y-cruncher pi 1b

perf sched msg fork thread
perf memcpy

namd 92K atoms
calculating prime numbers

argon2 hashing
ffmpeg compilation

xz compression
kernel defconfig

blender render
x265 encoding

Total time in seconds

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700

Elapsed time (less is better)

scx_rustland

EEVDF

time (sec)

Conclusion

Benefits of user-space scheduling
● Lower the barrier of scheduling development

● Faster edit/compile/test iterations

● Useful to quickly prototype and test crazy ideas

● Better debugging and observability

Future plans
● Standardize the user-space framework APIs
● More topology awareness APIs

– Cache, GPU, ...
● Introduce concept of scheduling domains

– Allow to define domains (via cpumask)
● More modularization
● Auto-generate schedulers

– Profile-based schedulers? AI?

References
● scx_rust_scheduler template (github)

– https://github.com/arighi/scx_rust_scheduler
● scx_rustland_core (github)

– https://github.com/sched-ext/scx/blob/main/rust/scx_rustland_core/README.md
● Writing a scheduler for Linux in Rust that runs in user-space

(arighi blog)
– https://arighi.blogspot.com/2024/02/writing-scheduler-for-linux-in-rust.html

● The extensible scheduler class (LWN.net)
– https://lwn.net/Articles/922405/

Questions?

Andrea Righi
Linux Plumbers Conference 2024 | Vienna

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

