
Multi-sized THP Performance
Benchmarks and Analysis on ARM64

Linux Plumbers Conference 2024

Yang Shi

Olivier Singla

Ampere Confidential

• Huge Page Concept and Brief History

• Multi-sized THP

• Benchmarks and Analysis

• Conclusions

• Discussions

2

Agenda

Ampere Confidential

• Huge Page Concept

• Huge pages are contiguous areas of physical memory

• The sizes are typically associated with page table level (PMD, PUD)

• The sizes are also architecture dependent

• MMU/TLB support

• Improve TLB coverage

• Huge Page Brief History

• HugeTLB (hugetlbfs): 2002 (PMD size only, v2.6 era)

• HugeTLB PUD size: v2.6.27

• Transparent Huge Page for anonymous (PMD size only): v2.6.38

• Transparent Huge Page for tmpfs/shmem (PMD size only): v4.8

3

Huge Page Concept and Brief History

Ampere Confidential

• Support intermediate sizes instead of PMD size only

• Some architectures support coalescing multiple PTEs into one entry in TLB (smaller than PMD
size)

o ARM64 contiguous PTE or HPA

o AMD PTE coalescing

• Multiple huge page sizes can be supported:

o 64K/128K/256K/512K/1M (4KPS on ARM64)

• Benefits

• Improve TLB utilization

• Easier to allocation than PMD size

• Possibly unify to one single kernel for distributions

o RHEL, SuSE and Ubuntu ship both 4K and 64K kernels

4

Multi-sized THP

Ampere Confidential

• ARM64 supports contiguous bit in page table:

• The bit identifies a descriptor as belonging to a group of adjacent page table entries

• Coalesce multiple properly aligned contiguous PTEs into one TLB entry with consistent
attributes and permissions:

5

Multi-sized THP

Base Page Size Number of adjacent
PTEs

Alignment of PTEs Alignment of
Address

4K 16 128 bytes 64KB

16K 128 1KB 2MB

64K 32 256 bytes 2MB

Ampere Confidential

• Multi-sized THP support (anonymous only) was merged in v6.8

• Supports 16K/32K/64K/128K/256K/512K/1M (4KPS)

• Added per-size interface at /sys/kernel/mm/transparent_hugepage:

• Controlled by /sys/kernel/mm/transparent_hugepage/hugepages-<size>/enabled:

• CONFIG_ARM64_CONTPTE (merged in v6.9):

o Maintain PTEs contiguous bit

o TLB maintenance for the region

6

Multi-sized THP

Ampere Confidential

• Ran on Ampere® Altra®

• ARM Neoverse-N1 core

• 1P/80 cores baremetal machine

• v6.9-rc4 based kernel from mm-unstable

• Default Fedora config and CONFIG_ARM64_CONTPTE enabled

• All the optimizations targeted for v6.9 are present

• Anonymous multi-sized THP only

• Enable target page size only for each run:

• Set the targe page size knob to always

• Disable all other page sizes (never)

• 4KPS (4K page size config and huge page disabled) as baseline

7

Benchmarks

Ampere Confidential

• Workloads

• Memcached

• Redis

• H.264 vbench

• Kernel compilation

• Specint 2017

• MySQL

8

Benchmarks

Ampere Confidential
COMPANY CONFIDENTIAL

Server Side : redis (version 7.2.0) - memcached (version 1.6.21)

• Compiled natively on each platform with -O3
• Each instance of Redis or Memcached is a single process.
• Redis is single-threaded – Memcached is multi-threaded

• Each instance of either Redis or Memcached is allocated 2.0 GB of memory
and configured to hold 13,600,000 keys/data before eviction will happen.

Client Side : memtier_benchmark (version 1.3.0)

• Compiled natively for the clients (Altra) with -O3
• Configuration

o We first populate the cache, so we get a 95% hits rate

→ 5% of key/value requests will come as not found
o 1:10 set/get ratio

→ 1 key/value write and 10 key/value read
o 64 bytes payload (average)

→ 56% 16 Bytes, 30% 64 Bytes, 12% 128 Bytes, 2% 1024 Bytes
o Data sent to servers is randomized.
o clients per thread and concurrent pipelined requests:

→ we pick the best configuration for each platform.
• Each run is a 2 minutes-long test (after the cache is populated).
• Some run-to-run variability, so we perform 5 runs and get the median value.

Server ClientTCP 9000

Server ClientTCP 9001

Server ClientTCP 9002

Server ClientTCP 9003

We run Redis and Memcached servers on the SUT and the clients on
dedicated machines (2 or 3 depending on the SUT). Each instance of Redis or
Memcached is independent and running on a dedicated single CPU.

The Mellanox 100 GbE card is configured to use the default number of
interrupts (IRQs), which is 63.

Benchmarks (Redis and Memcached – Test Setup)

SUT
2 or 3

Machines

Mellanox
100Gb/s
Switch

Both Redis and Memcached are an in-memory key-value store for small
chunks of arbitrary data. Redis provides additional features such as replication
and disk persistency (not used in this benchmark).

…
Metrics used:
• Op/Sec – Total number of get/set operations across all instances of

either Redis or Memcached in the SUT.
• P99 Latency: must be below 1 msec (SLA)

→ we use the max (“worse”) P99 latency across all instances.

…

Ampere Confidential

• No gain with 128K/256K/512K/1M either (4KPS)

10

Benchmarks (Memcached)

4K(4KPS) 64K
(4KPS)

2M
(4KPS)

16K
(16KPS)

2M
(16KPS)

32M
(16KPS)

64K
(64KPS)

2M
(64KPS)

Ops/sec
(M)

0% 0% +17% +9% +19% +23% +14% +19%

P99 lat
(msec)

0% 0% -36% -10% -29% -37% -11% -29%

Ampere Confidential

• Memcached huge page (64K 4KPS) distribution

11

Benchmarks (Memcached)

0

20000000

40000000

60000000

80000000

100000000

120000000

140000000

160000000

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220

KB

seconds

64k hugepage use

aligned-64k partial-64k

Ampere Confidential

• PMU metrics

• TLB misses (DTLB_mpki)

• TLB walk steps: count the real cost of each page table walk

• DTLB walk steps pki: DTLB walks steps * 1000 / INST_RETIRED

12

Benchmarks (Memcached)

4K (4KPS) 64K
(4KPS)

2M
(4KPS)

16K
(16KPS)

2M
(16KPS)

32M
(16KPS)

64K
(64KPS)

2M
(64KPS)

IPC:u 0% +3% +26% +13% +29% +39% +27% +33%

DTLB
walk
steps

0% -6% -54% -28% -60% -78% -28% -69%

DTLB
walk
steps pki

0% -6% -62% -34% -68% -84% -42% -76%

DTLB_mp
ki

0% -5% -59% -14% -67% -88% -22% -75%

Ampere Confidential

• No gain with 128K/256K/512K/1M either (4KPS)

• Similar pattern with Memcached

13

Benchmarks (Redis)

4K(4KPS) 64K
(4KPS)

2M
(4KPS)

16K
(16KPS)

2M
(16KPS)

32M
(16KPS)

64K
(64KPS)

2M
(64KPS)

Ops/sec
(M)

0% +3% +16% +14% +19% +20% +22% +19%

P99 lat
(msec)

0% 0% -14% -11% -22% -26% -23% -26%

Ampere Confidential

• Redis huge page (64K 4KPS) distribution

14

Benchmarks (Redis)

0

20000000

40000000

60000000

80000000

100000000

120000000

140000000

160000000

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

KB

seconds

64k hugepage use

aligned-64k partial-64k

Ampere Confidential

• PMU metrics

• The same metrics as Memcached

o DTLB_mpki showed weaker correlation

o DTLB walk steps pki showed much stronger correlation

15

Benchmarks (Redis)

4K (4KPS) 64K
(4KPS)

2M
(4KPS)

16K
(16KPS)

2M
(16KPS)

32M
(16KPS)

64K
(64KPS)

2M
(64KPS)

IPC:u 0% +0% +8% +3% +11% +13% +10% +12%

DTLB
walk
steps

0% -5% -56% -24% -65% -78% -23% -72%

DTLB
walk
steps pki

0% -4% -59% -27% -68% -81% -29% -75%

DTLB_mp
ki

0% -9% -55% -3% -60% -75% -7% -68%

Ampere Confidential

• DTLB_mpki doesn’t reflect the real cost of page table walk

• The cost of page table walk is determined by:

• The depth of page table

o 4KPS 48 VA bit: 4-level

o 64KPS 48 VA bit: 3-level

• The region size covered by each intermediate entry

16

Analysis

Level 0 Level 1 Level 2

4KPS 512G 1G 2M

16KPS 128T 64G 32M

64KPS N/A 4T 512M

Ampere Confidential

• Page table layout

• 4KPS: 4-level page table (48-bit VA)

o PMD-sized THP: 3-level page table in fact

17

Analysis

Ampere Confidential

• Page table layout

• 16KPS: 4-level page table (48 bit VA), but more entries for each level and each entry cover
larger address

• 64KPS: 3-level page table (48-bit VA)

18

Analysis

Ampere Confidential
COMPANY CONFIDENTIAL

We evaluate x264 using “vbench: a Benchmark for Video Transcoding in the Cloud, a benchmark for the emerging video-as-a-service workload”, available here:
http://arcade.cs.columbia.edu/vbench/

15 input files (compressed in H-264), sampled from youtube in 2017, in the public domain:
algorithmically selected to represent a large commercial corpus of millions of videos based on resolution, framerate, and complexity.

Different resolutions (480p, 720p, 1080p, 4k) and different fps (25, 29.97, 30, 50 or 60).

Two different compression are provided:
• one (CRF0, lossless) is used for “upload” encoding profile
• and another one (CRF18, visually lossless) is provided for “vod” encoding profile.

CRF0
Encoded

Files

CRF18
Transcoded

Files

“upload” profile

1-pass encoding
CRF18 encoder profile

CRF18
Encoded

Files

CBR
Transcoded

Files

“vod” profile

2-pass encoding
CBR encoder profile

Profile File Size Bitrate Profile File Size Bitrate

chicken_3840x2160_30.mkv crf0 285 MB 477.74 Mb/s crf18 30 MB 49.19 Mb/s

Input Ouput
File

Profile File Size Bitrate Profile File Size Bitrate

chicken_3840x2160_30.mkv crf18 30 MB 477.74 Mb/s CBR 16,588,800 10 M 16.70 Mb/s

File
Input Ouput

CRF (Constant Rate Factor): a single-pass encoding mode, you choose a
quality target, and the encoder adjusts the bitrate to achieve that quality
level.

CRF values range from 0 to 51, with lower numbers delivering higher
quality scores.

CBR: constant bitrate over the entire file, irrespective of the complexity of the
scenes in the video file. You choose a target bitrate and the encoder adjusts quality
to meet that bitrate.

In 2-pass encoding: make a first run to collect statistics about the complexity of the
video, and then a second pass to achieve the best encoding quality according to
these statistics.

Benchmarks (H.264 – Test Setup)

http://arcade.cs.columbia.edu/vbench/

Ampere Confidential
COMPANY CONFIDENTIAL

Test Methodology:

• We use a recent version of ffmpeg (git tag 5.1.3) and libx264 (git repo, 2023-01-28),
dynamically built with gcc 12 (on Altra for aarch64 – on IceLake for x86_64).

• All the input files and output files are stored in a ramdisk - ffmpeg binary is also stored in a ramdisk

• Limited OS optimizations:
tuned-adm profile throughput-performance

echo performance | tee /sys/devices/system/cpu/cpu*/cpufreq/scaling_governor

• Each instance of ffmpeg is running on a dedicated CPU (CPU affinity done with numactl).

• Multiple instances of transcoders (single-threaded ffmpeg) over all available CPUs, running in parallel to transcode the set of 15 files.

Metric:
• We use the total number of files transcoded (for instance: 15*80) and divide it by the time it took to transcode all the files.

PSNR (peak signal-to-noise ratios):
• This ratio is used as a quality measurement between the original and a compressed image.

• The higher the PSNR, the better the quality of the compressed, or reconstructed image.

• We used the PSNR to verify that each encoder produced the same visual quality.

• The time it takes to compute PSNR is not part of the test metric.

Benchmarks (H.264 – Test Setup)

https://code.videolan.org/videolan/x264/-/tree/eaa68fad9e5d201d42fde51665f2d137ae96baf0

Ampere Confidential

• Tested with:

• 64K/128K/256K/512K/1M/2M (4KPS)

• 16K/2M (16KPS)

• 64K/2M (64KPS)

• No noticeable gain:

• 2% gain with 2M vs 4K (4KPS)

• < 1% gain with 16K vs 2M (16KPS) and 64K vs 2M (64KPS)

21

Benchmarks (H.264)

Ampere Confidential

• Using the default Fedora kernel config, gcc 13.2.1 (Fedora 39)

• No more gains with 128K+ (4KPS)

• The more cores, the more memory is used

• Gain mainly comes from reduced sys time due to reduced page faults

22

Benchmarks (Kernel compilation)

Real-time Sys-time Memory use
(80 cores)

Page faults

4K (4KPS) 0% 0% 0% 0%

64K (4KPS) -5% -33% +0% -74%

16K (16KPS) -15% -59% +2% -72%

64K (16KPS) -11% -59% +2% -87%

64K (64KPS) -16% -80% +18% -90%

Ampere Confidential

• Low single digit gain (< 4%) for some benchmarks of specint 2017 with 64K (4KPS)

• MySQL (read-only): no noticeable gain with 64K (4KPS) an 2M (4KPS) for any metrics

• Page fault was decreased by 33% with 64K (4KPS). No further reduction with 128K+

23

Benchmarks (specint & MySQL)

Ampere Confidential

• MMU overhead is one of the most significant contributing factors for Memcached and
Redis. Roughly 20% - 15% cycles were spent in page table walks for Redis and Memcached

• The cost of page table walk does make significant difference

• 64K (4KPS) can not replace 64K (64KPS)

• 16KPS with mTHP is an optimal solution with most of the performance gain while creating
an acceptable memory footprint increase

• Reduced page faults yield performance gain for some type of workloads

24

Conclusions

Thank You

	Slide 1: Multi-sized THP Performance Benchmarks and Analysis on ARM64
	Slide 2: Agenda
	Slide 3: Huge Page Concept and Brief History
	Slide 4: Multi-sized THP
	Slide 5: Multi-sized THP
	Slide 6: Multi-sized THP
	Slide 7: Benchmarks
	Slide 8: Benchmarks
	Slide 9: Benchmarks (Redis and Memcached – Test Setup)
	Slide 10: Benchmarks (Memcached)
	Slide 11: Benchmarks (Memcached)
	Slide 12: Benchmarks (Memcached)
	Slide 13: Benchmarks (Redis)
	Slide 14: Benchmarks (Redis)
	Slide 15: Benchmarks (Redis)
	Slide 16: Analysis
	Slide 17: Analysis
	Slide 18: Analysis
	Slide 19: Benchmarks (H.264 – Test Setup)
	Slide 20: Benchmarks (H.264 – Test Setup)
	Slide 21: Benchmarks (H.264)
	Slide 22: Benchmarks (Kernel compilation)
	Slide 23: Benchmarks (specint & MySQL)
	Slide 24: Conclusions
	Slide 25: Thank You

