
Mathieu Desnoyers, EfficiOS

Linux Plumbers Conference 2024
September 18-20
Vienna, Austria

Waste-Free Per-CPU
Userspace Memory Allocation

September 20, 2024 Linux Plumbers Conference 2024 2

Presentation Goals
● Discuss scaling of data structures by partitioning.
● Discuss challenges associated with use of per-CPU data in

user-space: memory use, false sharing, cache line waste.
● Present the librseq mempool per-CPU allocator.
● Discuss current mmap(2)/madvise(2) limitations with

respect to shared mappings meant to be local to a process
(mm).

September 20, 2024 Linux Plumbers Conference 2024 3

Expected Takeaways
● Feedback from memory management experts

about the per-mm shared memory mapping
use-case,

● Feedback on future work.

September 20, 2024 Linux Plumbers Conference 2024 4

Scaling Data Structures
● Scope of data structures,
● Partitioning data structures.

September 20, 2024 Linux Plumbers Conference 2024 5

Scope of Data Structures
● Local variable (stack),
● Static definition (data),
● Dynamic allocation (heap).

September 20, 2024 Linux Plumbers Conference 2024 6

Partitioning Data Structures
● Global variables

– Single instance used across all threads/CPUs.
● Thread-Local Storage (TLS)

– Each thread accesses its own data.
● Per-CPU data

– Each CPU accesses its own data.

September 20, 2024 Linux Plumbers Conference 2024 7

Thread-Local Storage (TLS)
● Inefficient use of CPU cache when the workload has

more threads than the system has CPUs,
● Static definition only,
● Initialization of large TLS areas slows down thread

creation,
● Global Dynamic TLS model for shared objects is slower

than Initial Exec and have additional side-effects.

September 20, 2024 Linux Plumbers Conference 2024 8

Per-CPU Data: An Alternative to TLS
● Partitioning strategy widely used within the

Linux kernel,
● Not so much in user-space.

September 20, 2024 Linux Plumbers Conference 2024 9

Anti-Pattern: Array of Per-CPU Items
● Array of N elements, N equals to number of

possible CPUs,
● Index accesses with sched_getcpu(3), RSEQ

cpu_id field, or
● Index accesses with RSEQ concurrency ID

(mm_cid field) since Linux v6.3.

September 20, 2024 Linux Plumbers Conference 2024 10

Anti-Pattern: Array of Per-CPU Items
struct_a (0)
struct_a (1)

struct_b (0)struct_a (0)

struct_a (1)

...
struct_a (n)

...

struct_a (n)

struct_b (0)
struct_b (1)

...
struct_b (n)

struct_b (1)

...

struct_b (n)
Ca

ch
e

li
ne

Padding
(wasted space)

False sharing Cache-line aligned

September 20, 2024 Linux Plumbers Conference 2024 11

Downsides of Per-CPU Array
Anti-Pattern

● If elements are not cache-line aligned:
– False sharing which hurts performance,

● If elements are cache-line aligned:
– Waste precious cache line bytes due to padding,
– Reduce functional density of CPU cache.

September 20, 2024 Linux Plumbers Conference 2024 12

Linux Kernel Per-CPU Allocator
● Per-CPU memory allocator,
● Map a memory range on each CPU,
● The memory allocator allocates ranges at the

same offset on each CPU.

September 20, 2024 Linux Plumbers Conference 2024 13

Librseq Mempool Per-CPU Allocator
● Port of per-CPU Linux kernel allocator concepts to user-

space,
● Implemented as a user-space API within librseq.
● Creation of memory pools. Each pool maps a memory range,

which is an array of per-CPU areas (e.g. 64kB per CPU).
● Allocation against a pool reserves memory at same offset for

each CPU.

September 20, 2024 Linux Plumbers Conference 2024 14

Layout of Mempool Range

struct_a (0)
struct_b (0)

struct_a (1)
struct_b (1)

...

...
struct_a (n)
struct_b (n)

CPU 0 CPU 1 CPU n

Pe
r-

CP
U

ar
ea

Unallocated,
so far

September 20, 2024 Linux Plumbers Conference 2024 15

Mempool Access Pattern
● Replace array of per-CPU variables anti-

pattern:
– item_array_base_ptr + (cpu * sizeof(item))

● With range-stride based pattern:
– item_ptr + (cpu * pool_stride)
– Default pool stride: 64kB

September 20, 2024 Linux Plumbers Conference 2024 16

Allocation From Pool
● Return a pointer in the area of CPU 0,
● Combines information about base of pool

ranges and offset of item.

September 20, 2024 Linux Plumbers Conference 2024 17

Mempool Range Layout with Metadata

struct_a (0)
struct_b (0)

...

...
struct_a (n)
struct_b (n)

CPU 0 CPU n

Pe
r-
CP
U
ar
ea

Header pageCanary page

On
e

pa
ge

struct_a
struct_b

Init values
Free list

(if robust mode)

September 20, 2024 Linux Plumbers Conference 2024 18

Freeing Items From Pool
● Support for multiple pools provides isolation

between users,
● Wish to do so without requiring the free API to

take extra arguments besides pointer to free.

September 20, 2024 Linux Plumbers Conference 2024 19

Reaching Pool Free-List From Pointer
● Map each pool range at aligned address,
● Find base by applying a mask

– Similar to Linux kernel finding task struct from stack pointer,
● Header page before base of range.

– Contains header structure describing range, pool, free-list.
● Aligned mmap(2) is not exposed by the Linux kernel.
● Implement it in userspace with mmap(2) of larger range, followed

by unmap(2) of unused areas.

September 20, 2024 Linux Plumbers Conference 2024 20

Memory Initialization
● Initializing newly allocated items by storing to

each possible CPU memory area reserves a lot of
resident memory on large systems,

● Systems with 512+ hardware threads are
inreasingly common (e.g. AMD EPYC),

● Users restrict CPUs with cpusets or sched affinity.

September 20, 2024 Linux Plumbers Conference 2024 21

Memory Initialization

● Init-range shared mapping (memfd),
● Each CPU is a private copy-on-write (CoW)

mapping of the init-range.
● CoW mappings only populate pages on store.

void __rseq_percpu *
 rseq_mempool_percpu_malloc_init(struct rseq_mempool *pool,
 void *init_ptr, size_t init_len);

September 20, 2024 Linux Plumbers Conference 2024 22

Memory Initialization
● Write initial content to the newly allocated area within the init-range,
● Iterate on all possible CPUs, read content visible from each CPU

mapping, compare with init-range content,
● If it matches, no need to store to the per-CPU mapping,
● On mismatch, a CoW happened for the page due to stores from that

CPU,
– Need to store initial content to that CPU mapping.

● Ensures that memory is only reserved when actively used (stored to) by
active CPUs.

September 20, 2024 Linux Plumbers Conference 2024 23

fork(2)/clone(2)
● The init-range shared mapping is unfortunately shared

across parent/children processes,
● Would ideally require a new type of mapping only shared

within a process,
● Inconvenient work-around using madvise(2)

MADV_DONTFORK to remove memory mappings from
children processes and MADV_WIPEONFORK on canary
page to allow detection of use across fork.

September 20, 2024 Linux Plumbers Conference 2024 24

Additional Features Available
● Pool auto-expand with additional ranges when a range is fully

allocated, up to a configurable upper bound.
● A mempool can be configured to either copy-on-write from init-range

or from the zero page.
● Robust free list corruption checks (double-free, leaks on pool

destruction, free-list corruption, poison values corruption).
● Mempool set, which is a collection of power-of-2 allocation size

pools, allowing allocation of variable length data with a binning
approach.

September 20, 2024 Linux Plumbers Conference 2024 25

Future Work
● Add support for allocation of variable sized elements within a pool.
● Add a guard page between per-CPU data to eliminate cache line

bouncing caused by hardware prefetch in sequential access patterns.
● Figure out a way to have a shared mapping which is only shared within

the process, not with its children.
● Improve cgroup cpu controller to allow expressing concurrency limits

without cpusets. This would facilitate limiting memory use of per-CPU
data structures indexed by concurrency IDs within containers on
machines with many CPUs.

September 20, 2024 Linux Plumbers Conference 2024 26

Discussion
● A case for per-mm shared pages:

– Mempool: init-range is a shared mapping, with CoW private mappings
for per-CPU ranges,

– Mesh allocator requires this as well. It also maps the same physical
page at different addresses to reduce internal allocator fragmentation.

● Mesh: Compacting Memory Management for C/C++ Applications
● https://dl.acm.org/doi/pdf/10.1145/3314221.3314582

– Google dynamic analysis tools require many MAP_SHARED mappings
of a given page within a process, behaving as MAP_PRIVATE on fork.

https://dl.acm.org/doi/pdf/10.1145/3314221.3314582

September 20, 2024 Linux Plumbers Conference 2024 27

Questions / Comments ?
● Links:

– https://git.kernel.org/pub/scm/libs/librseq/librseq.git/tree/include/rseq/mempool.h
– https://git.kernel.org/pub/scm/libs/librseq/librseq.git/tree/src/rseq-mempool.c

https://git.kernel.org/pub/scm/libs/librseq/librseq.git/tree/include/rseq/mempool.h
https://git.kernel.org/pub/scm/libs/librseq/librseq.git/tree/src/rseq-mempool.c

	Waste-Free Per-CPU Userspace Memory Allocation
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

