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Presentation Goals
● Discuss scaling of data structures by partitioning.
● Discuss challenges associated with use of per-CPU data in 

user-space: memory use, false sharing, cache line waste.
● Present the librseq mempool per-CPU allocator.
● Discuss current mmap(2)/madvise(2) limitations with 

respect to shared mappings meant to be local to a process 
(mm).
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Expected Takeaways
● Feedback from memory management experts 

about the per-mm shared memory mapping 
use-case,

● Feedback on future work.
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Scaling Data Structures
● Scope of data structures,
● Partitioning data structures.
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Scope of Data Structures
● Local variable (stack),
● Static definition (data),
● Dynamic allocation (heap).
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Partitioning Data Structures
● Global variables

– Single instance used across all threads/CPUs.
● Thread-Local Storage (TLS)

– Each thread accesses its own data.
● Per-CPU data

– Each CPU accesses its own data.
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Thread-Local Storage (TLS)
● Inefficient use of CPU cache when the workload has 

more threads than the system has CPUs,
● Static definition only,
● Initialization of large TLS areas slows down thread 

creation,
● Global Dynamic TLS model for shared objects is slower 

than Initial Exec and have additional side-effects.
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Per-CPU Data: An Alternative to TLS
● Partitioning strategy widely used within the 

Linux kernel,
● Not so much in user-space.
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Anti-Pattern: Array of Per-CPU Items
● Array of N elements, N equals to number of 

possible CPUs,
● Index accesses with sched_getcpu(3), RSEQ 

cpu_id field, or
● Index accesses with RSEQ concurrency ID 

(mm_cid field) since Linux v6.3.
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Downsides of Per-CPU Array
Anti-Pattern

● If elements are not cache-line aligned:
– False sharing which hurts performance,

● If elements are cache-line aligned:
– Waste precious cache line bytes due to padding,
– Reduce functional density of CPU cache.
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Linux Kernel Per-CPU Allocator
● Per-CPU memory allocator,
● Map a memory range on each CPU,
● The memory allocator allocates ranges at the 

same offset on each CPU.
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Librseq Mempool Per-CPU Allocator
● Port of per-CPU Linux kernel allocator concepts to user-

space,
● Implemented as a user-space API within librseq.
● Creation of memory pools. Each pool maps a memory range, 

which is an array of per-CPU areas (e.g. 64kB per CPU).
● Allocation against a pool reserves memory at same offset for 

each CPU.
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Layout of Mempool Range
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Mempool Access Pattern
● Replace array of per-CPU variables anti-

pattern:
– item_array_base_ptr + (cpu * sizeof(item))

● With range-stride based pattern:
– item_ptr + (cpu * pool_stride)
– Default pool stride: 64kB
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Allocation From Pool
● Return a pointer in the area of CPU 0,
● Combines information about base of pool 

ranges and offset of item.
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Mempool Range Layout with Metadata
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Freeing Items From Pool
● Support for multiple pools provides isolation 

between users,
● Wish to do so without requiring the free API to 

take extra arguments besides pointer to free.
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Reaching Pool Free-List From Pointer
● Map each pool range at aligned address,
● Find base by applying a mask

– Similar to Linux kernel finding task struct from stack pointer,
● Header page before base of range.

– Contains header structure describing range, pool, free-list.
● Aligned mmap(2) is not exposed by the Linux kernel.
● Implement it in userspace with mmap(2) of larger range, followed 

by unmap(2) of unused areas.
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Memory Initialization
● Initializing newly allocated items by storing to 

each possible CPU memory area reserves a lot of 
resident memory on large systems,

● Systems with 512+ hardware threads are 
inreasingly common (e.g. AMD EPYC),

● Users restrict CPUs with cpusets or sched affinity.



September 20, 2024 Linux Plumbers Conference 2024 21

Memory Initialization

● Init-range shared mapping (memfd),
● Each CPU is a private copy-on-write (CoW) 

mapping of the init-range.
● CoW mappings only populate pages on store.

void __rseq_percpu *
    rseq_mempool_percpu_malloc_init(struct rseq_mempool *pool,
                                    void *init_ptr, size_t init_len);
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Memory Initialization
● Write initial content to the newly allocated area within the init-range,
● Iterate on all possible CPUs, read content visible from each CPU 

mapping, compare with init-range content,
● If it matches, no need to store to the per-CPU mapping,
● On mismatch, a CoW happened for the page due to stores from that 

CPU,
– Need to store initial content to that CPU mapping.

● Ensures that memory is only reserved when actively used (stored to) by 
active CPUs.
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fork(2)/clone(2)
● The init-range shared mapping is unfortunately shared 

across parent/children processes,
● Would ideally require a new type of mapping only shared 

within a process,
● Inconvenient work-around using madvise(2) 

MADV_DONTFORK to remove memory mappings from 
children processes and MADV_WIPEONFORK on canary 
page to allow detection of use across fork.
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Additional Features Available
● Pool auto-expand with additional ranges when a range is fully 

allocated, up to a configurable upper bound.
● A mempool can be configured to either copy-on-write from init-range 

or from the zero page.
● Robust free list corruption checks (double-free, leaks on pool 

destruction, free-list corruption, poison values corruption).
● Mempool set, which is a collection of power-of-2 allocation size 

pools, allowing allocation of variable length data with a binning 
approach.
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Future Work
● Add support for allocation of variable sized elements within a pool.
● Add a guard page between per-CPU data to eliminate cache line 

bouncing caused by hardware prefetch in sequential access patterns.
● Figure out a way to have a shared mapping which is only shared within 

the process, not with its children.
● Improve cgroup cpu controller to allow expressing concurrency limits 

without cpusets. This would facilitate limiting memory use of per-CPU 
data structures indexed by concurrency IDs within containers on 
machines with many CPUs.



September 20, 2024 Linux Plumbers Conference 2024 26

Discussion
● A case for per-mm shared pages:

– Mempool: init-range is a shared mapping, with CoW private mappings 
for per-CPU ranges,

– Mesh allocator requires this as well. It also maps the same physical 
page at different addresses to reduce internal allocator fragmentation.

● Mesh: Compacting Memory Management for C/C++ Applications
● https://dl.acm.org/doi/pdf/10.1145/3314221.3314582

– Google dynamic analysis tools require many MAP_SHARED mappings 
of a given page within a process, behaving as MAP_PRIVATE on fork.

https://dl.acm.org/doi/pdf/10.1145/3314221.3314582
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Questions / Comments ?
● Links:

– https://git.kernel.org/pub/scm/libs/librseq/librseq.git/tree/include/rseq/mempool.h
– https://git.kernel.org/pub/scm/libs/librseq/librseq.git/tree/src/rseq-mempool.c

https://git.kernel.org/pub/scm/libs/librseq/librseq.git/tree/include/rseq/mempool.h
https://git.kernel.org/pub/scm/libs/librseq/librseq.git/tree/src/rseq-mempool.c
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