Making Linux Fly
Towards a Certified Linux Kernel

Wentao Zhang

Tingxu Ren, Jinghao Jia, Darko Marinov, Tianyin Xu

UNIVERSITY OF

ILLINOIS

AAAAAAAAAAAAAAA

Overview

* Background

* Software certification and DO-178C guidance
* Modified Condition/Decision Coverage (MC/DC)

 First measurements of Linux kernel’s MC/DC
e How it works: 11vm-cov instrumentation

* Infrastructure for measuring Linux kernel’s MC/DC

 Toolchain
* RFC patch: kernel/11lvm-cov/
e Kernel tests

e Demonstration
e Future work

Certifying Linux to DO-178C

* Goal: achieving DO-178C objectives 5 through 9 in Table A-7 for the Linux kernel

* Objective 5: Test coverage of structure (modified condition/decision)is
achieved

* Objective 6: Test coverage of structure (decision coverage) is achieved
* Objective 7: Test coverage of structure (statement coverage) is achieved
* Objective 9: Verification of additional code, that cannot be traced to source
code, is achieved
* This talk’s focus: enabling measurement of MC/DC for Linux
* Provide the tools to report MC/DC and ensure the tools’ reliability
* Complementary work: aiming at achieving high coverage

Kernel Testing & Dependability MC talk
Measuring and Understanding Linux Kernel Tests
Friday 12:00 PM, "Hall N2" (Austria Center)

Modified Condition/Decision Coverage

int foo(int x, int y) { * Cover all conditions in an expression
s ((Xt> 9)1‘?& (y > 9)) e At least two test vectors (True/False)
SEe S to cover one condition
return 0;
} * Negating the condition also negates
the decision outcome independently
Test Decision
vector (x,y) C,(x >0) C,(y > 9) outcome CoverC, CoverC,
0 (-3,-2) False False
1 (4,-3) True False False *
2 (-1,2) False > False *
3 (1,3) True True True * *

Overview of Contributions

* We have built the first infrastructure for measuring Linux kernel’s
MC/DC

* Integrating open-source solutions

 Key components
* Tool: Clang/LLVM version >=18
* Target: Linux kernel mainline
* Tests: KUnit, kselftest, LTP

e Steps:
Compile and Dump profile
instrument E> Boot in QEMU E> Run tests E> and generate
the kernel reports

1 2 3 4

Overall Coverage Report Including MC/DC

Coverage Report

Created: 2024-08-27 11:32

Click here for information about interpreting this report.

Filename Function Coverage
arch/x86/ 36.65% (2174/5931)
block/ 20.38% (292/1433)
certs/system_keyring.c 28.57% (2/7)
crypto/ 22.61% (201/889)
drivers/ 13.87% (4531/32671)
fs/ 21.02% (1906/9068)
include/ 26.12% (3565/13648)
init/ 58.62% (68/116)
io_uring/ 0.40% (3/757)

ipe/ 9.39% (29/309)
kernel/ 35.66% (3458/9696)
lib 48.36% (1299/2686)
mm/ 40.39% (1338/3313)
net 10.31% (1381/13401)
security/ 26.80% (369/1377)
Totals 21.37% (20725/96983)

Generated by llvm-cov -- llvm version 20.0.0git

Summary page for the whole kernel source tree

Line Coverage

26.48% (18512/69901)
14.51% (2842/19588)
21.43% (21/98)
17.92% (2170/12107)
11.09% (63031/568127)
13.57% (22231/163875)
20.28% (14397/70980)
46.18% (767/1661)
0.82% (99/12016)
5.33% (284/5326)
26.60% (34934/131331)
39.28% (17893/45556)
28.95% (15991/55237)
6.42% (17886/278474)
14.55% (3419/23506)

14.53% (215756/1484725)

Branch Coverage
16.
8.
3.
13.
7.
9.
16.
31.
0.

82% (7100/42208)
76% (951/10858)
33% (1/30)

25% (572/4316)
53% (21449/284948
02% (6798/75372)
36% (2626/16052)
66% (202/638)

11% (7/6326)

2.78% (57/2048)

17.
26.
19.
.50% (5490/157004)
10.

9.70% (73258/755056 2.86% (1984/69490)

36% (11865/68346)
87% (8735/32514)
42% (5681/29254)

89% (1308/12006)

MC/DC

4.55% (143/3143)
1.82% (17/934)
.00% (0/2)

.75% (11/400)
.21% (592/26749)
.25% (159/7063)
.21% (105/1692)
.78% (7/90)

.00% (0/655)
.00% (0/149)
.64% (422/6358)
5.41% (228/1480)
5.94% (167/2812)
0.71% (113/15869)
1.45% (12/830)

(]
2
2
2
6
7
(]
(]
6

Simplest Example: 2-Condition Decision

218 11 if (la) /* num < 2 || size == @ */ e o wilSard
219 3 return;
220
221 /* called from 'sort' without swap function, let's pick the default */
222 8 if J(swap_func == SWAP_WRAPPER && ! ((struct wrapper *)priv)->swap)
MC/DC Decision Region (222:6) to (222:66
Number of Conditions: 2
Condition C1 --> (222:6)
Condition C2 --> (222:35)
Executed MC/DC Test Vectors: llb/ sort.c: Sor‘t_r‘
Cc1, C2 Result
1{T, F =F }
2{T, T =T }
MC/DC Coverage tor EXpressionf 50.00%
223 6 swap_func = NULL;
224
225 8 if (!swap_func) {
7
226 6 if (is_aligned(base, size, 8))

Example of a 6-Condition Decision

=
[o)

(=
N

=
00

=
(o}

=
[

N 00 O 00 0 ©

=
=

=
N

=
W

8.
.37k
.37k
.37k
.70k
.37k
.09k

40k

15

for (L f < end; f++
(f->class == (u32) (dev->class >> f->class_shift) ||
f->class == (u32) PCI_ANY_ID) &%
(f->vendor == dev->vendor ||

f->vendor (ul6) PCI_ANY_ID) &&

(f->device dev->device ||

f->device (ule) PCI_ANY_ID)) {

Number of Conditions: 6
Condition C1 --> (157:8)
Condition C2 --> (158:8)
Condition C3 --> (159:8)
Condition C4 --> (160:8)
Condition C5 --> (161:8)
Condition C6 --> (162:8)

Executed MC/DC Test Vectors:

c1, C2, C3, C4, C5, Cé6 Result
1 { F) F) o il o - =F }
2 { F) T: F) F) o - =F }
3 { F) TJ T) o F) F =F }
AT, =5 Fy Fy = = =F }
5 { F) T: T: il F: T =T }
6 { F) T) TJ il T: - =T }
7{T, -, F, T, F, T =T }
8 { T) o T) o F) T =T }

Cl-Pair: covered:
C2-Pair: covered:

C3-Pair: covered:
C4-Pair: covered:
C5-Pair: covered:

C6-Pair: covered:
3 _ _ _ ssion:j 100.00%

void (*hook)(struct pci_dev *dev);

drivers/pci/quirks.c:
pci do fixups

lLlustration of 11vm-cov Instrumentation

* Instrumentation adds counters

$ clang -Xclang -dump-coverage-mapping

File 0, 1:23 -> 5:2 = #0

int foo(int x, int y) { File 0, 2:9 -> 2:27 = #0

if ((X 5 0) &8& (y > 9)) File O, 229 ->2:16 = #0
return 1; Branch,File 0, 2:9 -> 2:16 = #2, (#0 - #2)
return 0; File 0, 2:20 -> 2:27 = #2
} Branch,File 0, 2:20 -> 2:27 = #3, (#2 - #3)

Gap,File 0, 2:28 -> 3:9 = #1

File 0, 3:9 -> 3:17 = #1

Gap,File 0, 3:18 -=> 4:5 = (#0 - #1)
File 0, 4:5 -> 4:13 = (#0 - #1)

lLlustration of 11vm-cov Instrumentation

* Instrumentation adds counters

$ clang -Xclang -dump-coverage-mapping

—> File 0, 1:23 -> 5:2 = #0

int foo(int x, int y) { File 0, 2:9 -> 2:27 = #0

if ((X 5 0) &8& (y > 9)) File O, 229 ->2:16 = #0
return 1; Branch,File 0, 2:9 -> 2:16 = #2, (#0 - #2)

return 0; File 0, 2:20 -> 2:27 = #2
} Branch,File 0, 2:20 -> 2:27 = #3, (#2 - #3)
Gap,File 0, 2:28 -> 3:9 = #1
File 0, 3:9 -> 3:17 = #1
Gap,File 0, 3:18 -> 4.5 = (#0 - #1)
File 0, 4:5 -> 4:13 = (#0 - #1)

Coderegion: How many times the curly brace is entered?

10

lLlustration of 11vm-cov Instrumentation

* Instrumentation adds counters

$ clang -Xclang -dump-coverage-mapping

File 0, 1:23 -> 5:2 = #0

int foo(int x, int y) { — File 0, 2:9 -> 2:27 = #0

if ((X 5 0) &8& (y > 9)) File O, 229 ->2:16 = #0
return 1; Branch,File 0, 2:9 -> 2:16 = #2, (#0 - #2)
return 0; File 0, 2:20 -> 2:27 = #2
} Branch,File 0, 2:20 -> 2:27 = #3, (#2 - #3)

Gap,File 0, 2:28 -> 3:9 = #1

File 0, 3:9 -> 3:17 = #1

Gap,File 0, 3:18 -=> 4:5 = (#0 - #1)
File 0, 4:5 -> 4:13 = (#0 - #1)

Coderegion: How many times the decision is evaluated?

11

lLlustration of 11vm-cov Instrumentation

* Instrumentation adds counters

$ clang -Xclang -dump-coverage-mapping

File 0, 1:23 -> 5:2 = #0

int foo(int x, int y) { File 0, 2:9 -> 2:27 = #0

if ((X 5 0) && (y 5 0)) — File 0, 219. ->2:16 = #0
return 1; Branch,File 0, 2:9 -> 2:16 = #2, (#0 - #2)
return 0; File 0, 2:20 -> 2:27 = #2
} Branch,File 0, 2:20 -> 2:27 = #3, (#2 - #3)

Gap,File 0, 2:28 -> 3:9 = #1

File 0, 3:9 -> 3:17 = #1

Gap,File 0, 3:18 -=> 4:5 = (#0 - #1)
File 0, 4:5 -> 4:13 = (#0 - #1)

Coderegion: How many times the 1st condition is evaluated?

12

lLlustration of 11vm-cov Instrumentation

* Instrumentation adds counters

$ clang -Xclang -dump-coverage-mapping

File 0, 1:23 -> 5:2 = #0

int foo(int x, int y) { F!Ie 0, 2:9 ->2:27 = #0
if ((x > 0) & (y > 9)) File O, 2:9-> 2:16 = #0
return 1; B.ranch,Flle 0, 2:9 -> 2:16 = #2, (#0 - #2)
return 0; —» File 0, 2:20 -> 2:27 = #2
} Branch,File 0, 2:20 -> 2:27 = #3, (#2 - #3)

Gap,File 0, 2:28 -> 3:9 = #1

File 0, 3:9 -> 3:17 = #1

Gap,File 0, 3:18 -=> 4:5 = (#0 - #1)
File 0, 4:5 -> 4:13 = (#0 - #1)

Coderegion: How many times the 2nd condition is evaluated?

13

lLlustration of 11vm-cov Instrumentation

* Instrumentation adds counters

$ clang -Xclang -dump-coverage-mapping

File 0, 1:23 ->5:2 =#0 The same location also
int foo(int x, int y) { File 0, 2:9 -> 2:27 = #0 has a branch region
if ((x > 0) && (y > 9)) File 0, 2:9 -> 2:16 = #0
return 1; —> Branch,File 0, 2:9 -> 2:16 = #2, (#0 - #2)
return 0; File 0, 2:20 -> 2:27 = #2
} Branch,File 0, 2:20 -> 2:27 = #3, (#2 - #3)

Gap,File 0, 2:28 -> 3:9 = #1

File 0, 3:9 -> 3:17 = #1

Gap,File 0, 3:18 -=> 4:5 = (#0 - #1)
File 0, 4:5 -> 4:13 = (#0 - #1)

Branch region: How many times the 1st condition is evaluated to “true” and “false” respectively?
14

lLlustration of 11vm-cov Instrumentation

* Instrumentation adds counters

$ clang -Xclang -dump-coverage-mapping

File 0, 1:23 -> 5:2 = #0

The same location also]

int foo(int x, int y) { File 0, 2:9 -> 2:27 = #0 has a branch region
if ((X 5 0) &8& (y > 0)) File O, 229 ->2:16 = #0
return 1; Branch,File 0, 2:9 -> 2:16 = #2, (
return 0; File 0, 2:20 -> 2:27 = #2
} — Branch,File 0, 2:20 -> 2:27 = #3, (#2 - #3)

Gap,File 0, 2:28 -> 3:9 = #1

File 0, 3:9 -> 3:17 = #1

Gap,File 0, 3:18 -=> 4:5 = (#0 - #1)
File 0, 4:5 -> 4:13 = (#0 - #1)

Branch region: How many times the 2nd condition is evaluated to “true” and “false” respectively?
15

lLlustration of 11vm-cov Instrumentation

* Instrumentation adds counters

$ clang -Xclang -dump-coverage-mapping

File 0, 1:23 -> 5:2 = #0

int foo(int x, int y) { File 0, 2:9 -> 2:27 = #0

if ((X 5 0) &8& (y > 9)) File O, 229 ->2:16 = #0
return 1; Branch,File 0, 2:9 -> 2:16 = #2, (#0 - #2)
return 0; File 0, 2:20 -> 2:27 = #2
} Branch,File 0, 2:20 -> 2:27 = #3, (#2 - #3)

Gap,File 0, 2:28 -> 3:9 = #1

— File 0, 3:9 -> 3:17 = #1
Gap,File 0, 3:18 -=> 4:5 = (#0 - #1)
File 0, 4:5 -> 4:13 = (#0 - #1)

Coderegion: How many times the 1st return statement is executed?

16

lLlustration of 11vm-cov Instrumentation

* Instrumentation adds counters

$ clang -Xclang -dump-coverage-mapping

File 0, 1:23 -> 5:2 = #0

int foo(int x, int y) { File 0, 2:9 -> 2:27 = #0

if ((X 5 0) &8& (y > 9)) File O, 229 ->2:16 = #0
return 1; Branch,File 0, 2:9 -> 2:16 = #2, (#0 - #2)

return 0; File 0, 2:20 -> 2:27 = #2
} Branch,File 0, 2:20 -> 2:27 = #3, (#2 - #3)
Gap,File 0, 2:28 -> 3:9 = #1
File 0, 3:9 -> 3:17 = #1
Gap,File 0, 3:18 -> 4.5 = (#0 - #1)
—> File 0, 4:5 -> 4:13 = (#0 - #1)

Coderegion: How many times the 2nd return statement is executed?

17

lLlustration of 11vm-cov Instrumentation

* Instrumentation adds counters

$ clang -Xclang -dump-coverage-mapping

#0
int foo(int x, int y) { #0
if ((x > 0) && (y > 9)) #0
return 1; #2, (#0 - #2)
return 0; #2
} #3, (#2 - #3)
#1
#1
(#0 - #1)

(#O - #1)

18

lLlustration of 11vm-cov Instrumentation

* Instrumentation adds counters

$ clang -Xclang -dump-coverage-mapping

#0
int foo(int x, int y) { #0
if ((x > 0) && (y > 9)) #0
return 1; #2, (#0 - #2)
return 0; #2
} #3, (#2 - #3)
1
#1
(#0 - #1)
(#0 - #1)

Four independent counters are maintained. Others can be derived from these four.

19

lLlustration of 11vm-cov Instrumentation

* Instrumentation adds counters

$ clang -Xclang -dump-coverage-mapping

LLVM IR 40

~
~

~
~

%pgocount = load i64, ptr @__profc_foo(int, int), align 8 ~~
%0 = add 164 %pgocount, 1 Tl

store i64 %0, ptr @__profc_foo(int, int), align 8 \.#2
x86-64 4o
mov rax, qword ptr [rip + .L__profc_foo(int, int)] /,/, #1

add rax, 1 -’

mov gword ptr [rip + .L__profc_foo(int, int)], rax

Counters under the hood: memory read, add by one and memory write

Infrastructure for Measuring Linux MC/DC

* Tool: Clang/LLVM version>=18
* We helped test the tool as early adopters and fixed/reported bugs

* Target: Linux kernel mainline
* We built the necessary kernel support to export the coverage profile
* Results shown are forvée.11-rc5

 Tests: KUnit, kselftest and LTP
 Results shown are for KUnit

21

Toolchain

* MC/DC feature for Clang/LLVM was implemented and merged into
mainline in January 2024

* Built on top of Source-based Code Coverage [1]
* Mostly contributed by Alan Phipps from Texas Instruments
* Utilizing bitmaps to track test vectors

* Included in releases >=18.1.0 since March 2024
* We are actively testing and verifying Clang/LLVM MC/DC

* We are among the first to test this implementation (and our target is very
unique!)

* Collaborating with the upstream, we fixed/reported a few bugs (see next
slides)

[1] https://clang.llvm.org/docs/SourceBasedCodeCoverage.html >

https://clang.llvm.org/docs/SourceBasedCodeCoverage.html

Our Contributions to LLVM

ID Title Status
#80952 [llvm-cov][CoverageView] minor fix/improvement to HTML and text coverage output Merged
#82464 [clang][CodeGen] Keep processing the rest of AST after encountering unsupported MC/DC Merged
expressions
#86998 [clang][CoverageMapping] "Assertion AfterLoc.isValid() failed" during compiling switch Merged
within statement expressions
#87000 [llvm-cov][MC/DC] "Branch not found in Decisions" when handling complicated macros Merged
#92216 [llvm-cov][MC/DC] "Branch not found in Decisions" when handling variadic macros Confirmed
#95831 [clang][CoverageMapping] Assertion fails when headers included in function bodies Reported
#96016 [llvm-cov] let text mode divider honor --show-branch-summary --show-region-summaryetc Merged
#97385 [llvm-cov][MC/DC] "Out-of-bounds Bit access.”" when run with binary profile correlation Confirmed
#101241 [CoverageMapping]fail to evaluate "constant folded" conditions at compile time Confirmed

23

Our Contributions to LLVM

* Important bugs in LLVM MC/DC found on Linux

Reduced kernel code Reduced kernel code
struct Foo foo = { #define FOO(x) foo_##x
.fieldl = ({
switch (123) { int a, foo_b;
case 123:
break; if (a & & FOO(b)) { ... }
}
456;
})s
}s
* #86998 (and fix in #89564) #87000 (and fix in #89869)
* Exposed by fs/coredump.c * Exposed bydrivers/iommu/intel/perfmon.c
* Anon-standard C syntax * Complicated macros

* Even with these fixes, Clang/LLVM coverage does not work out-of-
the-box to measure code coverage of the Linux kernel b

Kernel Support for Linux MC/DC

* Challenge: export in-memory counters and bitmaps

* Straightforward for user-space applications: just write to a file at the same
directory as the executable

* |n a freestanding environment, like OS kernels: no concept of “current directory”

e Solution: write to a pseudo file system instead
* Also the practice of kernel/gcov/

* Implementation of kernel/11lvm-cov/
e Kbuild support

* Debugfs interface and profile serialization

* Reuse part of patch by Sami Tolvanen et al. “Fgo: add clang's Profile Guided Optimization
infrastructure patches” [1] with different goals: performance optimization vs. precise
coverage for high assurance

* RFC “Enable measuring the kernel's Source-based Code Coverage and MC/DC
with Clang” [2]

[1] https://lore.kernel.org/lkml/20210407211704.367039-1-morbo@google.com/
[2] https://lore.kernel.org/lkml/20240824230641.385839-1-wentaoz5@illinois.edu/

25

https://lore.kernel.org/lkml/20210407211704.367039-1-morbo@google.com/
https://lore.kernel.org/lkml/20240824230641.385839-1-wentaoz5@illinois.edu/

Exercise Various Kernel Testing Techniques

* Coverage report with different kernel test harnesses:

F ti

Kernel test harnesses unction Line coverage Branch coverage MC/DC
coverage

Boot 28.05% 19.80% 13.61% 4.58%

Boot + KUnit 30.60% 12.55pp 22.06% 12.26pp 15.62% 12.01pp 5.23% 10.65pp

Boot + KUnit + Kselftest + LTP

39.29% 18.69pp

29.95% 17.89pp

22.29% 16.67pp

9.68% 14.45pp

26

Demo

« 11vm-cov with user space programs

Compile and
instrument the
program

1

=

Run tests

« 11vm-cov with Linux kernel

Compile and
instrument the
kernel

1

=

Bootin QEMU

Generate reports

|:> Run tests

Dump profile and
generate reports

27

Demo

« 11vm-cov with user space programs

Compile and
instrument the
program

1

=

Run tests

User space-specific
Kernel-specific

« 11vm-cov with Linux kernel

Compile and
instrument the
kernel

1

=

Bootin QEMU

Generate reports

|:> Run tests

Dump profile and
generate reports

28

Summary and Future Work

Visit links in slides

* We can measure MC/DC of Linux kernel and give feedback
* Tested with different kernel branches
* RFC “Enable measuring the kernel's Source-based Code Coverage and MC/DC
with Clang”
Next steps

* Test the tools more thoroughly and keep improving them
* Check reliability and accuracy of the current implementation
* Improve the presentation of data in the report
 Compare with proprietary tools like VectorCAST
* DO-330 Tool Qualification for 11vm-cov

* Other objectives for certifying Linux

e Data coupling and control coupling coverage (DO-178C objective 8)
* Object coverage (DO-178C objective 9)

29

Acknowledgement

* Open-source community

 LLVM developers: Alan Phipps, @chapuni, @ZequanWu, @ornata,
@hanickadot, @MaskRay...

* GCC developers: Jargen Kvalsvik, Andrew Pinski, Alejandro Colomar...
* Kernel developers: Sami Tolvanen, Bill Wendling, Dmitry Vyukowv...
* ELISA community

* Experiments are largely run on CloudLab
* UIUC work is supported with funding from The Boeing Company

30

