
Making Linux Fly
Towards a Certified Linux Kernel

Wentao Zhang
Tingxu Ren, Jinghao Jia, Darko Marinov, Tianyin Xu

1

Overview

2

Overview

• Background
• Software certification and DO-178C guidance

2

Overview

• Background
• Software certification and DO-178C guidance
• Modified Condition/Decision Coverage (MC/DC)

2

Overview

• Background
• Software certification and DO-178C guidance
• Modified Condition/Decision Coverage (MC/DC)

• First measurements of Linux kernel’s MC/DC

2

Overview

• Background
• Software certification and DO-178C guidance
• Modified Condition/Decision Coverage (MC/DC)

• First measurements of Linux kernel’s MC/DC
• How it works: llvm-cov instrumentation

2

Overview

• Background
• Software certification and DO-178C guidance
• Modified Condition/Decision Coverage (MC/DC)

• First measurements of Linux kernel’s MC/DC
• How it works: llvm-cov instrumentation
• Infrastructure for measuring Linux kernel’s MC/DC

2

Overview

• Background
• Software certification and DO-178C guidance
• Modified Condition/Decision Coverage (MC/DC)

• First measurements of Linux kernel’s MC/DC
• How it works: llvm-cov instrumentation
• Infrastructure for measuring Linux kernel’s MC/DC

• Toolchain

2

Overview

• Background
• Software certification and DO-178C guidance
• Modified Condition/Decision Coverage (MC/DC)

• First measurements of Linux kernel’s MC/DC
• How it works: llvm-cov instrumentation
• Infrastructure for measuring Linux kernel’s MC/DC

• Toolchain
• RFC patch: kernel/llvm-cov/

2

Overview

• Background
• Software certification and DO-178C guidance
• Modified Condition/Decision Coverage (MC/DC)

• First measurements of Linux kernel’s MC/DC
• How it works: llvm-cov instrumentation
• Infrastructure for measuring Linux kernel’s MC/DC

• Toolchain
• RFC patch: kernel/llvm-cov/
• Kernel tests

2

Overview

• Background
• Software certification and DO-178C guidance
• Modified Condition/Decision Coverage (MC/DC)

• First measurements of Linux kernel’s MC/DC
• How it works: llvm-cov instrumentation
• Infrastructure for measuring Linux kernel’s MC/DC

• Toolchain
• RFC patch: kernel/llvm-cov/
• Kernel tests

• Demonstration
• Future work

2

Certifying Linux to DO-178C

3

Certifying Linux to DO-178C
• Goal: achieving DO-178C objectives 5 through 9 in Table A-7 for the Linux kernel

3

Certifying Linux to DO-178C
• Goal: achieving DO-178C objectives 5 through 9 in Table A-7 for the Linux kernel

• Objective 5: Test coverage of structure (modified condition/decision) is
achieved

• Objective 6: Test coverage of structure (decision coverage) is achieved
• Objective 7: Test coverage of structure (statement coverage) is achieved
• Objective 9: Verification of additional code, that cannot be traced to source

code, is achieved

3

Certifying Linux to DO-178C
• Goal: achieving DO-178C objectives 5 through 9 in Table A-7 for the Linux kernel

• Objective 5: Test coverage of structure (modified condition/decision) is
achieved

• Objective 6: Test coverage of structure (decision coverage) is achieved
• Objective 7: Test coverage of structure (statement coverage) is achieved
• Objective 9: Verification of additional code, that cannot be traced to source

code, is achieved
• This talk’s focus: enabling measurement of MC/DC for Linux

3

Certifying Linux to DO-178C
• Goal: achieving DO-178C objectives 5 through 9 in Table A-7 for the Linux kernel

• Objective 5: Test coverage of structure (modified condition/decision) is
achieved

• Objective 6: Test coverage of structure (decision coverage) is achieved
• Objective 7: Test coverage of structure (statement coverage) is achieved
• Objective 9: Verification of additional code, that cannot be traced to source

code, is achieved
• This talk’s focus: enabling measurement of MC/DC for Linux

• Provide the tools to report MC/DC and ensure the tools’ reliability

3

Certifying Linux to DO-178C
• Goal: achieving DO-178C objectives 5 through 9 in Table A-7 for the Linux kernel

• Objective 5: Test coverage of structure (modified condition/decision) is
achieved

• Objective 6: Test coverage of structure (decision coverage) is achieved
• Objective 7: Test coverage of structure (statement coverage) is achieved
• Objective 9: Verification of additional code, that cannot be traced to source

code, is achieved
• This talk’s focus: enabling measurement of MC/DC for Linux

• Provide the tools to report MC/DC and ensure the tools’ reliability
• Complementary work: aiming at achieving high coverage

Kernel Testing & Dependability MC talk
Measuring and Understanding Linux Kernel Tests
Friday 12:00 PM, "Hall N2" (Austria Center)

3

Modified Condition/Decision Coverage

4

int foo(int x, int y) {
if ((x > 0) && (y > 0))

return 1;
return 0;

}

Modified Condition/Decision Coverage

4

int foo(int x, int y) {
if ((x > 0) && (y > 0))

return 1;
return 0;

}

(x > 0) && (y > 0)

Modified Condition/Decision Coverage
• Cover all conditions in an expression

4

int foo(int x, int y) {
if ((x > 0) && (y > 0))

return 1;
return 0;

}

(x > 0) && (y > 0)

Modified Condition/Decision Coverage
• Cover all conditions in an expression
• At least two test vectors (True/False)

to cover one condition

4

int foo(int x, int y) {
if ((x > 0) && (y > 0))

return 1;
return 0;

}

(x > 0) && (y > 0)

Modified Condition/Decision Coverage
• Cover all conditions in an expression
• At least two test vectors (True/False)

to cover one condition
• Negating the condition also negates

the decision outcome independently

4

int foo(int x, int y) {
if ((x > 0) && (y > 0))

return 1;
return 0;

}

(x > 0) && (y > 0)

Cover C2Cover C1
Decision
outcomeC2 (y > 0) C1 (x > 0) (x,y)

Test
vector

Modified Condition/Decision Coverage
• Cover all conditions in an expression
• At least two test vectors (True/False)

to cover one condition
• Negating the condition also negates

the decision outcome independently

4

int foo(int x, int y) {
if ((x > 0) && (y > 0))

return 1;
return 0;

}

(x > 0) && (y > 0)

Cover C2Cover C1
Decision
outcomeC2 (y > 0) C1 (x > 0) (x,y)

Test
vector

Modified Condition/Decision Coverage
• Cover all conditions in an expression
• At least two test vectors (True/False)

to cover one condition
• Negating the condition also negates

the decision outcome independently

4

int foo(int x, int y) {
if ((x > 0) && (y > 0))

return 1;
return 0;

}

(-3,-2)0

(4,-3)1

(-1,2)2

(1,3)3

(x > 0) && (y > 0)

Cover C2Cover C1
Decision
outcomeC2 (y > 0) C1 (x > 0) (x,y)

Test
vector

Modified Condition/Decision Coverage
• Cover all conditions in an expression
• At least two test vectors (True/False)

to cover one condition
• Negating the condition also negates

the decision outcome independently

4

int foo(int x, int y) {
if ((x > 0) && (y > 0))

return 1;
return 0;

}

False-False

FalseFalseTrue

False-False

TrueTrueTrue

(-3,-2)0

(4,-3)1

(-1,2)2

(1,3)3

(x > 0) && (y > 0)

Cover C2Cover C1
Decision
outcomeC2 (y > 0) C1 (x > 0) (x,y)

Test
vector

Modified Condition/Decision Coverage
• Cover all conditions in an expression
• At least two test vectors (True/False)

to cover one condition
• Negating the condition also negates

the decision outcome independently

4

int foo(int x, int y) {
if ((x > 0) && (y > 0))

return 1;
return 0;

}

False-False

FalseFalseTrue

False-False

TrueTrueTrue

(-3,-2)0

(4,-3)1

(-1,2)2

(1,3)3

*

*

(x > 0) && (y > 0)

Cover C2Cover C1
Decision
outcomeC2 (y > 0) C1 (x > 0) (x,y)

Test
vector

Modified Condition/Decision Coverage
• Cover all conditions in an expression
• At least two test vectors (True/False)

to cover one condition
• Negating the condition also negates

the decision outcome independently

4

int foo(int x, int y) {
if ((x > 0) && (y > 0))

return 1;
return 0;

}

False-False

FalseFalseTrue

False-False

TrueTrueTrue

(-3,-2)0

(4,-3)1

(-1,2)2

(1,3)3

*

*

(x > 0) && (y > 0)

Cover C2Cover C1
Decision
outcomeC2 (y > 0) C1 (x > 0) (x,y)

Test
vector

Modified Condition/Decision Coverage
• Cover all conditions in an expression
• At least two test vectors (True/False)

to cover one condition
• Negating the condition also negates

the decision outcome independently

4

int foo(int x, int y) {
if ((x > 0) && (y > 0))

return 1;
return 0;

}

False-False

FalseFalseTrue

False-False

TrueTrueTrue

(-3,-2)0

(4,-3)1

(-1,2)2

(1,3)3

*

*

(x > 0) && (y > 0)

Cover C2Cover C1
Decision
outcomeC2 (y > 0) C1 (x > 0) (x,y)

Test
vector

Modified Condition/Decision Coverage
• Cover all conditions in an expression
• At least two test vectors (True/False)

to cover one condition
• Negating the condition also negates

the decision outcome independently

4

int foo(int x, int y) {
if ((x > 0) && (y > 0))

return 1;
return 0;

}

False-False

FalseFalseTrue

False-False

TrueTrueTrue

(-3,-2)0

(4,-3)1

(-1,2)2

(1,3)3

*

*

(x > 0) && (y > 0)

Cover C2Cover C1
Decision
outcomeC2 (y > 0) C1 (x > 0) (x,y)

Test
vector

Modified Condition/Decision Coverage
• Cover all conditions in an expression
• At least two test vectors (True/False)

to cover one condition
• Negating the condition also negates

the decision outcome independently

4

int foo(int x, int y) {
if ((x > 0) && (y > 0))

return 1;
return 0;

}

False-False

FalseFalseTrue

False-False

TrueTrueTrue

(-3,-2)0

(4,-3)1

(-1,2)2

(1,3)3

*

*

(x > 0) && (y > 0)

Cover C2Cover C1
Decision
outcomeC2 (y > 0) C1 (x > 0) (x,y)

Test
vector

Modified Condition/Decision Coverage
• Cover all conditions in an expression
• At least two test vectors (True/False)

to cover one condition
• Negating the condition also negates

the decision outcome independently

4

int foo(int x, int y) {
if ((x > 0) && (y > 0))

return 1;
return 0;

}

False-False

FalseFalseTrue

False-False

TrueTrueTrue

(-3,-2)0

(4,-3)1

(-1,2)2

(1,3)3

*

*

(x > 0) && (y > 0)

Cover C2Cover C1
Decision
outcomeC2 (y > 0) C1 (x > 0) (x,y)

Test
vector

Modified Condition/Decision Coverage
• Cover all conditions in an expression
• At least two test vectors (True/False)

to cover one condition
• Negating the condition also negates

the decision outcome independently

4

int foo(int x, int y) {
if ((x > 0) && (y > 0))

return 1;
return 0;

}

False-False

FalseFalseTrue

False-False

TrueTrueTrue

(-3,-2)0

(4,-3)1

(-1,2)2

(1,3)3

*

*

*

*

(x > 0) && (y > 0)

Cover C2Cover C1
Decision
outcomeC2 (y > 0) C1 (x > 0) (x,y)

Test
vector

Modified Condition/Decision Coverage
• Cover all conditions in an expression
• At least two test vectors (True/False)

to cover one condition
• Negating the condition also negates

the decision outcome independently

4

int foo(int x, int y) {
if ((x > 0) && (y > 0))

return 1;
return 0;

}

False-False

FalseFalseTrue

False-False

TrueTrueTrue

(-3,-2)0

(4,-3)1

(-1,2)2

(1,3)3

*

*

*

*

(x > 0) && (y > 0)

Overview of Contributions

5

Overview of Contributions
• We have built the first infrastructure for measuring Linux kernel’s

MC/DC
• Integrating open-source solutions

5

Overview of Contributions
• We have built the first infrastructure for measuring Linux kernel’s

MC/DC
• Integrating open-source solutions

• Key components
• Tool: Clang/LLVM version >= 18
• Target: Linux kernel mainline
• Tests: KUnit, kselftest, LTP

5

Overview of Contributions
• We have built the first infrastructure for measuring Linux kernel’s

MC/DC
• Integrating open-source solutions

• Key components
• Tool: Clang/LLVM version >= 18
• Target: Linux kernel mainline
• Tests: KUnit, kselftest, LTP

• Steps:

5

Overview of Contributions
• We have built the first infrastructure for measuring Linux kernel’s

MC/DC
• Integrating open-source solutions

• Key components
• Tool: Clang/LLVM version >= 18
• Target: Linux kernel mainline
• Tests: KUnit, kselftest, LTP

• Steps:

Compile and
instrument
the kernel

1 5

Overview of Contributions
• We have built the first infrastructure for measuring Linux kernel’s

MC/DC
• Integrating open-source solutions

• Key components
• Tool: Clang/LLVM version >= 18
• Target: Linux kernel mainline
• Tests: KUnit, kselftest, LTP

• Steps:

Compile and
instrument
the kernel

1

Boot in QEMU

2 5

Overview of Contributions
• We have built the first infrastructure for measuring Linux kernel’s

MC/DC
• Integrating open-source solutions

• Key components
• Tool: Clang/LLVM version >= 18
• Target: Linux kernel mainline
• Tests: KUnit, kselftest, LTP

• Steps:

Compile and
instrument
the kernel

1

Boot in QEMU

2

Run tests

3 5

Overview of Contributions
• We have built the first infrastructure for measuring Linux kernel’s

MC/DC
• Integrating open-source solutions

• Key components
• Tool: Clang/LLVM version >= 18
• Target: Linux kernel mainline
• Tests: KUnit, kselftest, LTP

• Steps:

Compile and
instrument
the kernel

1

Boot in QEMU

2

Run tests

3

Dump profile
and generate

reports

4 5

Overall Coverage Report Including MC/DC

Summary page for the whole kernel source tree 6

Overall Coverage Report Including MC/DC

Summary page for the whole kernel source tree 6

Overall Coverage Report Including MC/DC

Summary page for the whole kernel source tree 6

Overall Coverage Report Including MC/DC

Summary page for the whole kernel source tree 6

Simplest Example: 2-Condition Decision

lib/sort.c:sort_r

7

Simplest Example: 2-Condition Decision

lib/sort.c:sort_r

7

Simplest Example: 2-Condition Decision

lib/sort.c:sort_r

7

Simplest Example: 2-Condition Decision

lib/sort.c:sort_r

7

Example of a 6-Condition Decision

8

drivers/pci/quirks.c:
pci_do_fixups

Example of a 6-Condition Decision

8

drivers/pci/quirks.c:
pci_do_fixups

Example of a 6-Condition Decision

8

drivers/pci/quirks.c:
pci_do_fixups

Example of a 6-Condition Decision

8

drivers/pci/quirks.c:
pci_do_fixups

Illustration of llvm-cov Instrumentation

9

Illustration of llvm-cov Instrumentation

• Instrumentation adds counters

9

Illustration of llvm-cov Instrumentation

• Instrumentation adds counters

int foo(int x, int y) {
if ((x > 0) && (y > 0))

return 1;
return 0;

}

9

Illustration of llvm-cov Instrumentation

• Instrumentation adds counters

$ clang -Xclang -dump-coverage-mapping

int foo(int x, int y) {
if ((x > 0) && (y > 0))

return 1;
return 0;

}

9

Illustration of llvm-cov Instrumentation

• Instrumentation adds counters

$ clang -Xclang -dump-coverage-mapping

File 0, 1:23 -> 5:2 = #0
File 0, 2:9 -> 2:27 = #0
File 0, 2:9 -> 2:16 = #0
Branch,File 0, 2:9 -> 2:16 = #2, (#0 - #2)
File 0, 2:20 -> 2:27 = #2
Branch,File 0, 2:20 -> 2:27 = #3, (#2 - #3)
Gap,File 0, 2:28 -> 3:9 = #1
File 0, 3:9 -> 3:17 = #1
Gap,File 0, 3:18 -> 4:5 = (#0 - #1)
File 0, 4:5 -> 4:13 = (#0 - #1)

int foo(int x, int y) {
if ((x > 0) && (y > 0))

return 1;
return 0;

}

9

Illustration of llvm-cov Instrumentation

• Instrumentation adds counters

int foo(int x, int y) {
if ((x > 0) && (y > 0))

return 1;
return 0;

}

$ clang -Xclang -dump-coverage-mapping

File 0, 1:23 -> 5:2 = #0
File 0, 2:9 -> 2:27 = #0
File 0, 2:9 -> 2:16 = #0
Branch,File 0, 2:9 -> 2:16 = #2, (#0 - #2)
File 0, 2:20 -> 2:27 = #2
Branch,File 0, 2:20 -> 2:27 = #3, (#2 - #3)
Gap,File 0, 2:28 -> 3:9 = #1
File 0, 3:9 -> 3:17 = #1
Gap,File 0, 3:18 -> 4:5 = (#0 - #1)
File 0, 4:5 -> 4:13 = (#0 - #1)

Code region: How many times the curly brace is entered?
10

Illustration of llvm-cov Instrumentation

• Instrumentation adds counters

int foo(int x, int y) {
if ((x > 0) && (y > 0))

return 1;
return 0;

}

$ clang -Xclang -dump-coverage-mapping

File 0, 1:23 -> 5:2 = #0
File 0, 2:9 -> 2:27 = #0
File 0, 2:9 -> 2:16 = #0
Branch,File 0, 2:9 -> 2:16 = #2, (#0 - #2)
File 0, 2:20 -> 2:27 = #2
Branch,File 0, 2:20 -> 2:27 = #3, (#2 - #3)
Gap,File 0, 2:28 -> 3:9 = #1
File 0, 3:9 -> 3:17 = #1
Gap,File 0, 3:18 -> 4:5 = (#0 - #1)
File 0, 4:5 -> 4:13 = (#0 - #1)

Code region: How many times the decision is evaluated?
11

Illustration of llvm-cov Instrumentation

• Instrumentation adds counters

int foo(int x, int y) {
if ((x > 0) && (y > 0))

return 1;
return 0;

}

$ clang -Xclang -dump-coverage-mapping

File 0, 1:23 -> 5:2 = #0
File 0, 2:9 -> 2:27 = #0
File 0, 2:9 -> 2:16 = #0
Branch,File 0, 2:9 -> 2:16 = #2, (#0 - #2)
File 0, 2:20 -> 2:27 = #2
Branch,File 0, 2:20 -> 2:27 = #3, (#2 - #3)
Gap,File 0, 2:28 -> 3:9 = #1
File 0, 3:9 -> 3:17 = #1
Gap,File 0, 3:18 -> 4:5 = (#0 - #1)
File 0, 4:5 -> 4:13 = (#0 - #1)

Code region: How many times the 1st condition is evaluated?
12

Illustration of llvm-cov Instrumentation

• Instrumentation adds counters

int foo(int x, int y) {
if ((x > 0) && (y > 0))

return 1;
return 0;

}

$ clang -Xclang -dump-coverage-mapping

File 0, 1:23 -> 5:2 = #0
File 0, 2:9 -> 2:27 = #0
File 0, 2:9 -> 2:16 = #0
Branch,File 0, 2:9 -> 2:16 = #2, (#0 - #2)
File 0, 2:20 -> 2:27 = #2
Branch,File 0, 2:20 -> 2:27 = #3, (#2 - #3)
Gap,File 0, 2:28 -> 3:9 = #1
File 0, 3:9 -> 3:17 = #1
Gap,File 0, 3:18 -> 4:5 = (#0 - #1)
File 0, 4:5 -> 4:13 = (#0 - #1)

Code region: How many times the 2nd condition is evaluated?
13

Illustration of llvm-cov Instrumentation

• Instrumentation adds counters

int foo(int x, int y) {
if ((x > 0) && (y > 0))

return 1;
return 0;

}

$ clang -Xclang -dump-coverage-mapping

File 0, 1:23 -> 5:2 = #0
File 0, 2:9 -> 2:27 = #0
File 0, 2:9 -> 2:16 = #0
Branch,File 0, 2:9 -> 2:16 = #2, (#0 - #2)
File 0, 2:20 -> 2:27 = #2
Branch,File 0, 2:20 -> 2:27 = #3, (#2 - #3)
Gap,File 0, 2:28 -> 3:9 = #1
File 0, 3:9 -> 3:17 = #1
Gap,File 0, 3:18 -> 4:5 = (#0 - #1)
File 0, 4:5 -> 4:13 = (#0 - #1)

2:9 -> 2:16
2:9 -> 2:16

14

Illustration of llvm-cov Instrumentation

• Instrumentation adds counters

int foo(int x, int y) {
if ((x > 0) && (y > 0))

return 1;
return 0;

}

$ clang -Xclang -dump-coverage-mapping

File 0, 1:23 -> 5:2 = #0
File 0, 2:9 -> 2:27 = #0
File 0, 2:9 -> 2:16 = #0
Branch,File 0, 2:9 -> 2:16 = #2, (#0 - #2)
File 0, 2:20 -> 2:27 = #2
Branch,File 0, 2:20 -> 2:27 = #3, (#2 - #3)
Gap,File 0, 2:28 -> 3:9 = #1
File 0, 3:9 -> 3:17 = #1
Gap,File 0, 3:18 -> 4:5 = (#0 - #1)
File 0, 4:5 -> 4:13 = (#0 - #1)

The same location also
has a branch region

2:9 -> 2:16
2:9 -> 2:16

The same location

14

Illustration of llvm-cov Instrumentation

• Instrumentation adds counters

int foo(int x, int y) {
if ((x > 0) && (y > 0))

return 1;
return 0;

}

$ clang -Xclang -dump-coverage-mapping

File 0, 1:23 -> 5:2 = #0
File 0, 2:9 -> 2:27 = #0
File 0, 2:9 -> 2:16 = #0
Branch,File 0, 2:9 -> 2:16 = #2, (#0 - #2)
File 0, 2:20 -> 2:27 = #2
Branch,File 0, 2:20 -> 2:27 = #3, (#2 - #3)
Gap,File 0, 2:28 -> 3:9 = #1
File 0, 3:9 -> 3:17 = #1
Gap,File 0, 3:18 -> 4:5 = (#0 - #1)
File 0, 4:5 -> 4:13 = (#0 - #1)

The same location also
has a branch region

2:9 -> 2:16
2:9 -> 2:16

The same location

14

Illustration of llvm-cov Instrumentation

• Instrumentation adds counters

int foo(int x, int y) {
if ((x > 0) && (y > 0))

return 1;
return 0;

}

$ clang -Xclang -dump-coverage-mapping

File 0, 1:23 -> 5:2 = #0
File 0, 2:9 -> 2:27 = #0
File 0, 2:9 -> 2:16 = #0
Branch,File 0, 2:9 -> 2:16 = #2, (#0 - #2)
File 0, 2:20 -> 2:27 = #2
Branch,File 0, 2:20 -> 2:27 = #3, (#2 - #3)
Gap,File 0, 2:28 -> 3:9 = #1
File 0, 3:9 -> 3:17 = #1
Gap,File 0, 3:18 -> 4:5 = (#0 - #1)
File 0, 4:5 -> 4:13 = (#0 - #1)

Branch region:

The same location also
has a branch region

2:9 -> 2:16
2:9 -> 2:16

The same location

14

Illustration of llvm-cov Instrumentation

• Instrumentation adds counters

int foo(int x, int y) {
if ((x > 0) && (y > 0))

return 1;
return 0;

}

$ clang -Xclang -dump-coverage-mapping

File 0, 1:23 -> 5:2 = #0
File 0, 2:9 -> 2:27 = #0
File 0, 2:9 -> 2:16 = #0
Branch,File 0, 2:9 -> 2:16 = #2, (#0 - #2)
File 0, 2:20 -> 2:27 = #2
Branch,File 0, 2:20 -> 2:27 = #3, (#2 - #3)
Gap,File 0, 2:28 -> 3:9 = #1
File 0, 3:9 -> 3:17 = #1
Gap,File 0, 3:18 -> 4:5 = (#0 - #1)
File 0, 4:5 -> 4:13 = (#0 - #1)

Branch region: How many times the 1st condition is evaluated to “true” and “false” respectively?

The same location also
has a branch region

2:9 -> 2:16
2:9 -> 2:16

The same location

14

Illustration of llvm-cov Instrumentation

• Instrumentation adds counters

int foo(int x, int y) {
if ((x > 0) && (y > 0))

return 1;
return 0;

}

$ clang -Xclang -dump-coverage-mapping

File 0, 1:23 -> 5:2 = #0
File 0, 2:9 -> 2:27 = #0
File 0, 2:9 -> 2:16 = #0
Branch,File 0, 2:9 -> 2:16 = #2, (#0 - #2)
File 0, 2:20 -> 2:27 = #2
Branch,File 0, 2:20 -> 2:27 = #3, (#2 - #3)
Gap,File 0, 2:28 -> 3:9 = #1
File 0, 3:9 -> 3:17 = #1
Gap,File 0, 3:18 -> 4:5 = (#0 - #1)
File 0, 4:5 -> 4:13 = (#0 - #1)

Branch region: How many times the 2nd condition is evaluated to “true” and “false” respectively?

The same location also
has a branch region

15

Illustration of llvm-cov Instrumentation

• Instrumentation adds counters

int foo(int x, int y) {
if ((x > 0) && (y > 0))

return 1;
return 0;

}

$ clang -Xclang -dump-coverage-mapping

File 0, 1:23 -> 5:2 = #0
File 0, 2:9 -> 2:27 = #0
File 0, 2:9 -> 2:16 = #0
Branch,File 0, 2:9 -> 2:16 = #2, (#0 - #2)
File 0, 2:20 -> 2:27 = #2
Branch,File 0, 2:20 -> 2:27 = #3, (#2 - #3)
Gap,File 0, 2:28 -> 3:9 = #1
File 0, 3:9 -> 3:17 = #1
Gap,File 0, 3:18 -> 4:5 = (#0 - #1)
File 0, 4:5 -> 4:13 = (#0 - #1)

Code region: How many times the 1st return statement is executed?
16

Illustration of llvm-cov Instrumentation

• Instrumentation adds counters

int foo(int x, int y) {
if ((x > 0) && (y > 0))

return 1;
return 0;

}

$ clang -Xclang -dump-coverage-mapping

File 0, 1:23 -> 5:2 = #0
File 0, 2:9 -> 2:27 = #0
File 0, 2:9 -> 2:16 = #0
Branch,File 0, 2:9 -> 2:16 = #2, (#0 - #2)
File 0, 2:20 -> 2:27 = #2
Branch,File 0, 2:20 -> 2:27 = #3, (#2 - #3)
Gap,File 0, 2:28 -> 3:9 = #1
File 0, 3:9 -> 3:17 = #1
Gap,File 0, 3:18 -> 4:5 = (#0 - #1)
File 0, 4:5 -> 4:13 = (#0 - #1)

Code region: How many times the 2nd return statement is executed?
17

Illustration of llvm-cov Instrumentation

• Instrumentation adds counters

int foo(int x, int y) {
if ((x > 0) && (y > 0))

return 1;
return 0;

}

$ clang -Xclang -dump-coverage-mapping

File 0, 1:23 -> 5:2 = #0
File 0, 2:9 -> 2:27 = #0
File 0, 2:9 -> 2:16 = #0
Branch,File 0, 2:9 -> 2:16 = #2, (#0 - #2)
File 0, 2:20 -> 2:27 = #2
Branch,File 0, 2:20 -> 2:27 = #3, (#2 - #3)
Gap,File 0, 2:28 -> 3:9 = #1
File 0, 3:9 -> 3:17 = #1
Gap,File 0, 3:18 -> 4:5 = (#0 - #1)
File 0, 4:5 -> 4:13 = (#0 - #1)

18

Illustration of llvm-cov Instrumentation

• Instrumentation adds counters

int foo(int x, int y) {
if ((x > 0) && (y > 0))

return 1;
return 0;

}

$ clang -Xclang -dump-coverage-mapping

File 0, 1:23 -> 5:2 = #0
File 0, 2:9 -> 2:27 = #0
File 0, 2:9 -> 2:16 = #0
Branch,File 0, 2:9 -> 2:16 = #2, (#0 - #2)
File 0, 2:20 -> 2:27 = #2
Branch,File 0, 2:20 -> 2:27 = #3, (#2 - #3)
Gap,File 0, 2:28 -> 3:9 = #1
File 0, 3:9 -> 3:17 = #1
Gap,File 0, 3:18 -> 4:5 = (#0 - #1)
File 0, 4:5 -> 4:13 = (#0 - #1)

19

Illustration of llvm-cov Instrumentation

• Instrumentation adds counters

int foo(int x, int y) {
if ((x > 0) && (y > 0))

return 1;
return 0;

}

$ clang -Xclang -dump-coverage-mapping

File 0, 1:23 -> 5:2 = #0
File 0, 2:9 -> 2:27 = #0
File 0, 2:9 -> 2:16 = #0
Branch,File 0, 2:9 -> 2:16 = #2, (#0 - #2)
File 0, 2:20 -> 2:27 = #2
Branch,File 0, 2:20 -> 2:27 = #3, (#2 - #3)
Gap,File 0, 2:28 -> 3:9 = #1
File 0, 3:9 -> 3:17 = #1
Gap,File 0, 3:18 -> 4:5 = (#0 - #1)
File 0, 4:5 -> 4:13 = (#0 - #1)

Four independent counters are maintained. Others can be derived from these four.
19

Illustration of llvm-cov Instrumentation

• Instrumentation adds counters

$ clang -Xclang -dump-coverage-mapping

File 0, 1:23 -> 5:2 = #0
File 0, 2:9 -> 2:27 = #0
File 0, 2:9 -> 2:16 = #0
Branch,File 0, 2:9 -> 2:16 = #2, (#0 - #2)
File 0, 2:20 -> 2:27 = #2
Branch,File 0, 2:20 -> 2:27 = #3, (#2 - #3)
Gap,File 0, 2:28 -> 3:9 = #1
File 0, 3:9 -> 3:17 = #1
Gap,File 0, 3:18 -> 4:5 = (#0 - #1)
File 0, 4:5 -> 4:13 = (#0 - #1)

20

Illustration of llvm-cov Instrumentation

• Instrumentation adds counters

$ clang -Xclang -dump-coverage-mapping

File 0, 1:23 -> 5:2 = #0
File 0, 2:9 -> 2:27 = #0
File 0, 2:9 -> 2:16 = #0
Branch,File 0, 2:9 -> 2:16 = #2, (#0 - #2)
File 0, 2:20 -> 2:27 = #2
Branch,File 0, 2:20 -> 2:27 = #3, (#2 - #3)
Gap,File 0, 2:28 -> 3:9 = #1
File 0, 3:9 -> 3:17 = #1
Gap,File 0, 3:18 -> 4:5 = (#0 - #1)
File 0, 4:5 -> 4:13 = (#0 - #1)

%pgocount = load i64, ptr @__profc_foo(int, int), align 8
%0 = add i64 %pgocount, 1
store i64 %0, ptr @__profc_foo(int, int), align 8

mov rax, qword ptr [rip + .L__profc_foo(int, int)]
add rax, 1
mov qword ptr [rip + .L__profc_foo(int, int)], rax

LLVM IR

x86-64

20

Illustration of llvm-cov Instrumentation

• Instrumentation adds counters

$ clang -Xclang -dump-coverage-mapping

File 0, 1:23 -> 5:2 = #0
File 0, 2:9 -> 2:27 = #0
File 0, 2:9 -> 2:16 = #0
Branch,File 0, 2:9 -> 2:16 = #2, (#0 - #2)
File 0, 2:20 -> 2:27 = #2
Branch,File 0, 2:20 -> 2:27 = #3, (#2 - #3)
Gap,File 0, 2:28 -> 3:9 = #1
File 0, 3:9 -> 3:17 = #1
Gap,File 0, 3:18 -> 4:5 = (#0 - #1)
File 0, 4:5 -> 4:13 = (#0 - #1)

Counters under the hood: memory read, add by one and memory write

%pgocount = load i64, ptr @__profc_foo(int, int), align 8
%0 = add i64 %pgocount, 1
store i64 %0, ptr @__profc_foo(int, int), align 8

mov rax, qword ptr [rip + .L__profc_foo(int, int)]
add rax, 1
mov qword ptr [rip + .L__profc_foo(int, int)], rax

LLVM IR

x86-64

20

Infrastructure for Measuring Linux MC/DC

21

Infrastructure for Measuring Linux MC/DC

• Tool: Clang/LLVM version >= 18
• We helped test the tool as early adopters and fixed/reported bugs

21

Infrastructure for Measuring Linux MC/DC

• Tool: Clang/LLVM version >= 18
• We helped test the tool as early adopters and fixed/reported bugs

• Target: Linux kernel mainline
• We built the necessary kernel support to export the coverage profile
• Results shown are for v6.11-rc5

21

Infrastructure for Measuring Linux MC/DC

• Tool: Clang/LLVM version >= 18
• We helped test the tool as early adopters and fixed/reported bugs

• Target: Linux kernel mainline
• We built the necessary kernel support to export the coverage profile
• Results shown are for v6.11-rc5

• Tests: KUnit, kselftest and LTP
• Results shown are for KUnit

21

Toolchain

22

Toolchain

• MC/DC feature for Clang/LLVM was implemented and merged into
mainline in January 2024
• Built on top of Source-based Code Coverage [1]
• Mostly contributed by Alan Phipps from Texas Instruments
• Utilizing bitmaps to track test vectors

[1] https://clang.llvm.org/docs/SourceBasedCodeCoverage.html 22

https://clang.llvm.org/docs/SourceBasedCodeCoverage.html

Toolchain

• MC/DC feature for Clang/LLVM was implemented and merged into
mainline in January 2024
• Built on top of Source-based Code Coverage [1]
• Mostly contributed by Alan Phipps from Texas Instruments
• Utilizing bitmaps to track test vectors

• Included in releases >= 18.1.0 since March 2024

[1] https://clang.llvm.org/docs/SourceBasedCodeCoverage.html 22

https://clang.llvm.org/docs/SourceBasedCodeCoverage.html

Toolchain

• MC/DC feature for Clang/LLVM was implemented and merged into
mainline in January 2024
• Built on top of Source-based Code Coverage [1]
• Mostly contributed by Alan Phipps from Texas Instruments
• Utilizing bitmaps to track test vectors

• Included in releases >= 18.1.0 since March 2024
• We are actively testing and verifying Clang/LLVM MC/DC
• We are among the first to test this implementation (and our target is very

unique!)
• Collaborating with the upstream, we fixed/reported a few bugs (see next

slides)

[1] https://clang.llvm.org/docs/SourceBasedCodeCoverage.html 22

https://clang.llvm.org/docs/SourceBasedCodeCoverage.html

Our Contributions to LLVM
ID Title Status
#80952 [llvm-cov][CoverageView] minor fix/improvement to HTML and text coverage output Merged

#82464 [clang][CodeGen] Keep processing the rest of AST after encountering unsupported MC/DC
expressions

Merged

#86998 [clang][CoverageMapping] "Assertion AfterLoc.isValid() failed" during compiling switch
within statement expressions

Merged

#87000 [llvm-cov][MC/DC] "Branch not found in Decisions" when handling complicated macros Merged

#92216 [llvm-cov][MC/DC] "Branch not found in Decisions" when handling variadic macros Confirmed

#95831 [clang][CoverageMapping] Assertion fails when headers included in function bodies Reported

#96016 [llvm-cov] let text mode divider honor --show-branch-summary --show-region-summary etc Merged

#97385 [llvm-cov][MC/DC] "Out-of-bounds Bit access." when run with binary profile correlation Confirmed

#101241 [CoverageMapping] fail to evaluate "constant folded" conditions at compile time Confirmed

… … …

23

Our Contributions to LLVM

• Important bugs in LLVM MC/DC found on Linux

24

Our Contributions to LLVM

• Important bugs in LLVM MC/DC found on Linux

struct Foo foo = {
.field1 = ({

switch (123) {
case 123:

break;
}
456;

}),
};

Reduced kernel code

• #86998 (and fix in #89564)
• Exposed by fs/coredump.c
• A non-standard C syntax

24

Our Contributions to LLVM

• Important bugs in LLVM MC/DC found on Linux

struct Foo foo = {
.field1 = ({

switch (123) {
case 123:

break;
}
456;

}),
};

Reduced kernel code

• #86998 (and fix in #89564)
• Exposed by fs/coredump.c
• A non-standard C syntax

#define FOO(x) foo_##x

int a, foo_b;

if (a && FOO(b)) { ... }

• #87000 (and fix in #89869)
• Exposed by drivers/iommu/intel/perfmon.c
• Complicated macros

Reduced kernel code

24

Our Contributions to LLVM

• Important bugs in LLVM MC/DC found on Linux

• Even with these fixes, Clang/LLVM coverage does not work out-of-
the-box to measure code coverage of the Linux kernel

struct Foo foo = {
.field1 = ({

switch (123) {
case 123:

break;
}
456;

}),
};

Reduced kernel code

• #86998 (and fix in #89564)
• Exposed by fs/coredump.c
• A non-standard C syntax

#define FOO(x) foo_##x

int a, foo_b;

if (a && FOO(b)) { ... }

• #87000 (and fix in #89869)
• Exposed by drivers/iommu/intel/perfmon.c
• Complicated macros

Reduced kernel code

24

Kernel Support for Linux MC/DC
• Challenge: export in-memory counters and bitmaps

25

https://lore.kernel.org/lkml/20210407211704.367039-1-morbo@google.com/
https://lore.kernel.org/lkml/20240824230641.385839-1-wentaoz5@illinois.edu/

Kernel Support for Linux MC/DC
• Challenge: export in-memory counters and bitmaps

• Straightforward for user-space applications: just write to a file at the same
directory as the executable

25

https://lore.kernel.org/lkml/20210407211704.367039-1-morbo@google.com/
https://lore.kernel.org/lkml/20240824230641.385839-1-wentaoz5@illinois.edu/

Kernel Support for Linux MC/DC
• Challenge: export in-memory counters and bitmaps

• Straightforward for user-space applications: just write to a file at the same
directory as the executable

• In a freestanding environment, like OS kernels: no concept of “current directory”

25

https://lore.kernel.org/lkml/20210407211704.367039-1-morbo@google.com/
https://lore.kernel.org/lkml/20240824230641.385839-1-wentaoz5@illinois.edu/

Kernel Support for Linux MC/DC
• Challenge: export in-memory counters and bitmaps

• Straightforward for user-space applications: just write to a file at the same
directory as the executable

• In a freestanding environment, like OS kernels: no concept of “current directory”
• Solution: write to a pseudo file system instead

• Also the practice of kernel/gcov/

25

https://lore.kernel.org/lkml/20210407211704.367039-1-morbo@google.com/
https://lore.kernel.org/lkml/20240824230641.385839-1-wentaoz5@illinois.edu/

Kernel Support for Linux MC/DC
• Challenge: export in-memory counters and bitmaps

• Straightforward for user-space applications: just write to a file at the same
directory as the executable

• In a freestanding environment, like OS kernels: no concept of “current directory”
• Solution: write to a pseudo file system instead

• Also the practice of kernel/gcov/
• Implementation of kernel/llvm-cov/

• Kbuild support
• Debugfs interface and profile serialization

25

https://lore.kernel.org/lkml/20210407211704.367039-1-morbo@google.com/
https://lore.kernel.org/lkml/20240824230641.385839-1-wentaoz5@illinois.edu/

Kernel Support for Linux MC/DC
• Challenge: export in-memory counters and bitmaps

• Straightforward for user-space applications: just write to a file at the same
directory as the executable

• In a freestanding environment, like OS kernels: no concept of “current directory”
• Solution: write to a pseudo file system instead

• Also the practice of kernel/gcov/
• Implementation of kernel/llvm-cov/

• Kbuild support
• Debugfs interface and profile serialization

• Reuse part of patch by Sami Tolvanen et al. “pgo: add clang's Profile Guided Optimization
infrastructure patches” [1] with different goals: performance optimization vs. precise
coverage for high assurance

[1] https://lore.kernel.org/lkml/20210407211704.367039-1-morbo@google.com/
25

https://lore.kernel.org/lkml/20210407211704.367039-1-morbo@google.com/
https://lore.kernel.org/lkml/20240824230641.385839-1-wentaoz5@illinois.edu/

Kernel Support for Linux MC/DC
• Challenge: export in-memory counters and bitmaps

• Straightforward for user-space applications: just write to a file at the same
directory as the executable

• In a freestanding environment, like OS kernels: no concept of “current directory”
• Solution: write to a pseudo file system instead

• Also the practice of kernel/gcov/
• Implementation of kernel/llvm-cov/

• Kbuild support
• Debugfs interface and profile serialization

• Reuse part of patch by Sami Tolvanen et al. “pgo: add clang's Profile Guided Optimization
infrastructure patches” [1] with different goals: performance optimization vs. precise
coverage for high assurance

• RFC “Enable measuring the kernel's Source-based Code Coverage and MC/DC
with Clang” [2]

[1] https://lore.kernel.org/lkml/20210407211704.367039-1-morbo@google.com/
[2] https://lore.kernel.org/lkml/20240824230641.385839-1-wentaoz5@illinois.edu/

25

https://lore.kernel.org/lkml/20210407211704.367039-1-morbo@google.com/
https://lore.kernel.org/lkml/20240824230641.385839-1-wentaoz5@illinois.edu/

Exercise Various Kernel Testing Techniques

• Coverage report with different kernel test harnesses:

26

MC/DCBranch coverageLine coverageFunction
coverage Kernel test harnesses

Exercise Various Kernel Testing Techniques

• Coverage report with different kernel test harnesses:

26

MC/DCBranch coverageLine coverageFunction
coverage Kernel test harnesses

Boot

Exercise Various Kernel Testing Techniques

• Coverage report with different kernel test harnesses:

26

MC/DCBranch coverageLine coverageFunction
coverage Kernel test harnesses

4.58%13.61%19.80%28.05%Boot

Exercise Various Kernel Testing Techniques

• Coverage report with different kernel test harnesses:

26

MC/DCBranch coverageLine coverageFunction
coverage Kernel test harnesses

4.58%13.61%19.80%28.05%Boot

Boot

Exercise Various Kernel Testing Techniques

• Coverage report with different kernel test harnesses:

26

MC/DCBranch coverageLine coverageFunction
coverage Kernel test harnesses

4.58%13.61%19.80%28.05%Boot

Boot + KUnit

Exercise Various Kernel Testing Techniques

• Coverage report with different kernel test harnesses:

26

MC/DCBranch coverageLine coverageFunction
coverage Kernel test harnesses

4.58%13.61%19.80%28.05%Boot

5.23% 15.62% 22.06% 30.60% Boot + KUnit

Exercise Various Kernel Testing Techniques

• Coverage report with different kernel test harnesses:

26

MC/DCBranch coverageLine coverageFunction
coverage Kernel test harnesses

4.58%13.61%19.80%28.05%Boot

5.23% 15.62% 22.06% 30.60% ↑0.65pp↑2.01pp↑2.26pp↑2.55ppBoot + KUnit

Exercise Various Kernel Testing Techniques

• Coverage report with different kernel test harnesses:

26

MC/DCBranch coverageLine coverageFunction
coverage Kernel test harnesses

4.58%13.61%19.80%28.05%Boot

5.23% 15.62% 22.06% 30.60% ↑0.65pp↑2.01pp↑2.26pp↑2.55ppBoot

Boot + KUnit

+ KUnit

Exercise Various Kernel Testing Techniques

• Coverage report with different kernel test harnesses:

26

MC/DCBranch coverageLine coverageFunction
coverage Kernel test harnesses

4.58%13.61%19.80%28.05%Boot

5.23% 15.62% 22.06% 30.60% ↑0.65pp↑2.01pp↑2.26pp↑2.55ppBoot

Boot + KUnit + Kselftest + LTP

+ KUnit

Exercise Various Kernel Testing Techniques

• Coverage report with different kernel test harnesses:

26

MC/DCBranch coverageLine coverageFunction
coverage Kernel test harnesses

4.58%13.61%19.80%28.05%Boot

5.23% 15.62% 22.06% 30.60% ↑0.65pp↑2.01pp↑2.26pp↑2.55ppBoot

9.68% 22.29% 29.95% 39.29% Boot + KUnit + Kselftest + LTP

+ KUnit

Exercise Various Kernel Testing Techniques

• Coverage report with different kernel test harnesses:

26

MC/DCBranch coverageLine coverageFunction
coverage Kernel test harnesses

4.58%13.61%19.80%28.05%Boot

5.23% 15.62% 22.06% 30.60% ↑0.65pp↑2.01pp↑2.26pp↑2.55ppBoot

9.68% 22.29% 29.95% 39.29% ↑4.45pp↑6.67pp↑7.89pp↑8.69ppBoot + KUnit + Kselftest + LTP

+ KUnit

Demo

Compile and
instrument the

kernel

1

Boot in QEMU

2

Run tests

3

Dump profile and
generate reports

4

• llvm-cov with Linux kernel

27

Demo

Compile and
instrument the

kernel

1

Boot in QEMU

2

Run tests

3

Dump profile and
generate reports

4

• llvm-cov with user space programs

• llvm-cov with Linux kernel

Compile and
instrument the

program

1

Run tests

2

Generate reports

3

27

Demo

Compile and
instrument the

kernel

1

Boot in QEMU

2

Run tests

3

Dump profile and
generate reports

4

• llvm-cov with user space programs

• llvm-cov with Linux kernel

Compile and
instrument the

program

1

Run tests

2

Generate reports

3

User space-specific
Kernel-specific

28

Summary and Future Work

• We can measure MC/DC of Linux kernel
• Tested with different kernel branches
• RFC “Enable measuring the kernel's Source-based Code Coverage and MC/DC

with Clang”

Visit links in slides
and give feedback

29

Summary and Future Work

• We can measure MC/DC of Linux kernel
• Tested with different kernel branches
• RFC “Enable measuring the kernel's Source-based Code Coverage and MC/DC

with Clang”
Next steps

Visit links in slides
and give feedback

29

Summary and Future Work

• We can measure MC/DC of Linux kernel
• Tested with different kernel branches
• RFC “Enable measuring the kernel's Source-based Code Coverage and MC/DC

with Clang”
Next steps
• Test the tools more thoroughly and keep improving them

• Check reliability and accuracy of the current implementation
• Improve the presentation of data in the report
• Compare with proprietary tools like VectorCAST
• DO-330 Tool Qualification for llvm-cov

Visit links in slides
and give feedback

29

Summary and Future Work

• We can measure MC/DC of Linux kernel
• Tested with different kernel branches
• RFC “Enable measuring the kernel's Source-based Code Coverage and MC/DC

with Clang”
Next steps
• Test the tools more thoroughly and keep improving them

• Check reliability and accuracy of the current implementation
• Improve the presentation of data in the report
• Compare with proprietary tools like VectorCAST
• DO-330 Tool Qualification for llvm-cov

• Other objectives for certifying Linux
• Data coupling and control coupling coverage (DO-178C objective 8)
• Object coverage (DO-178C objective 9)

Visit links in slides
and give feedback

29

Acknowledgement

• Open-source community
• LLVM developers: Alan Phipps, @chapuni, @ZequanWu, @ornata,

@hanickadot, @MaskRay...
• GCC developers: Jørgen Kvalsvik, Andrew Pinski, Alejandro Colomar...
• Kernel developers: Sami Tolvanen, Bill Wendling, Dmitry Vyukov...
• ELISA community

• Experiments are largely run on CloudLab
• UIUC work is supported with funding from The Boeing Company

30

