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• Objective 9: Verification of additional code, that cannot be traced to source 

code, is achieved
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• Provide the tools to report MC/DC and ensure the tools’ reliability
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File 0, 4:5 -> 4:13 = (#0 - #1)

Code region: How many times the 1st return statement is executed?
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Illustration of llvm-cov Instrumentation

• Instrumentation adds counters

int foo(int x, int y) {
if ((x > 0) && (y > 0))

return 1;
return 0;

}

$ clang -Xclang -dump-coverage-mapping
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File 0, 2:9 -> 2:27 = #0
File 0, 2:9 -> 2:16 = #0
Branch,File 0, 2:9 -> 2:16 = #2, (#0 - #2)
File 0, 2:20 -> 2:27 = #2
Branch,File 0, 2:20 -> 2:27 = #3, (#2 - #3)
Gap,File 0, 2:28 -> 3:9 = #1
File 0, 3:9 -> 3:17 = #1
Gap,File 0, 3:18 -> 4:5 = (#0 - #1)
File 0, 4:5 -> 4:13 = (#0 - #1)

Code region: How many times the 2nd return statement is executed?
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int foo(int x, int y) {
if ((x > 0) && (y > 0))

return 1;
return 0;

}

$ clang -Xclang -dump-coverage-mapping

File 0, 1:23 -> 5:2 = #0
File 0, 2:9 -> 2:27 = #0
File 0, 2:9 -> 2:16 = #0
Branch,File 0, 2:9 -> 2:16 = #2, (#0 - #2)
File 0, 2:20 -> 2:27 = #2
Branch,File 0, 2:20 -> 2:27 = #3, (#2 - #3)
Gap,File 0, 2:28 -> 3:9 = #1
File 0, 3:9 -> 3:17 = #1
Gap,File 0, 3:18 -> 4:5 = (#0 - #1)
File 0, 4:5 -> 4:13 = (#0 - #1)

Four independent counters are maintained. Others can be derived from these four.
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Illustration of llvm-cov Instrumentation

• Instrumentation adds counters

$ clang -Xclang -dump-coverage-mapping

File 0, 1:23 -> 5:2 = #0
File 0, 2:9 -> 2:27 = #0
File 0, 2:9 -> 2:16 = #0
Branch,File 0, 2:9 -> 2:16 = #2, (#0 - #2)
File 0, 2:20 -> 2:27 = #2
Branch,File 0, 2:20 -> 2:27 = #3, (#2 - #3)
Gap,File 0, 2:28 -> 3:9 = #1
File 0, 3:9 -> 3:17 = #1
Gap,File 0, 3:18 -> 4:5 = (#0 - #1)
File 0, 4:5 -> 4:13 = (#0 - #1)

%pgocount = load i64, ptr @__profc_foo(int, int), align 8
%0 = add i64 %pgocount, 1
store i64 %0, ptr @__profc_foo(int, int), align 8

mov   rax, qword ptr [rip + .L__profc_foo(int, int)]
add   rax, 1
mov   qword ptr [rip + .L__profc_foo(int, int)], rax

LLVM IR

x86-64

20



Illustration of llvm-cov Instrumentation

• Instrumentation adds counters

$ clang -Xclang -dump-coverage-mapping

File 0, 1:23 -> 5:2 = #0
File 0, 2:9 -> 2:27 = #0
File 0, 2:9 -> 2:16 = #0
Branch,File 0, 2:9 -> 2:16 = #2, (#0 - #2)
File 0, 2:20 -> 2:27 = #2
Branch,File 0, 2:20 -> 2:27 = #3, (#2 - #3)
Gap,File 0, 2:28 -> 3:9 = #1
File 0, 3:9 -> 3:17 = #1
Gap,File 0, 3:18 -> 4:5 = (#0 - #1)
File 0, 4:5 -> 4:13 = (#0 - #1)

Counters under the hood: memory read, add by one and memory write

%pgocount = load i64, ptr @__profc_foo(int, int), align 8
%0 = add i64 %pgocount, 1
store i64 %0, ptr @__profc_foo(int, int), align 8

mov   rax, qword ptr [rip + .L__profc_foo(int, int)]
add   rax, 1
mov   qword ptr [rip + .L__profc_foo(int, int)], rax

LLVM IR

x86-64
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Infrastructure for Measuring Linux MC/DC

• Tool: Clang/LLVM version >= 18 
• We helped test the tool as early adopters and fixed/reported bugs 

• Target: Linux kernel mainline
• We built the necessary kernel support to export the coverage profile
• Results shown are for v6.11-rc5

• Tests: KUnit, kselftest and LTP
• Results shown are for KUnit

21



Toolchain

22



Toolchain

• MC/DC feature for Clang/LLVM was implemented and merged into 
mainline in January 2024
• Built on top of Source-based Code Coverage [1]
• Mostly contributed by Alan Phipps from Texas Instruments
• Utilizing bitmaps to track test vectors

[1] https://clang.llvm.org/docs/SourceBasedCodeCoverage.html 22
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Toolchain

• MC/DC feature for Clang/LLVM was implemented and merged into 
mainline in January 2024
• Built on top of Source-based Code Coverage [1]
• Mostly contributed by Alan Phipps from Texas Instruments
• Utilizing bitmaps to track test vectors

• Included in releases >= 18.1.0 since March 2024
• We are actively testing and verifying Clang/LLVM MC/DC
• We are among the first to test this implementation (and our target is very 

unique!)
• Collaborating with the upstream, we fixed/reported a few bugs (see next 

slides)

[1] https://clang.llvm.org/docs/SourceBasedCodeCoverage.html 22

https://clang.llvm.org/docs/SourceBasedCodeCoverage.html


Our Contributions to LLVM
ID Title Status
#80952 [llvm-cov][CoverageView] minor fix/improvement to HTML and text coverage output Merged

#82464 [clang][CodeGen] Keep processing the rest of AST after encountering unsupported MC/DC 
expressions

Merged

#86998 [clang][CoverageMapping] "Assertion AfterLoc.isValid() failed" during compiling switch 
within statement expressions

Merged

#87000 [llvm-cov][MC/DC] "Branch not found in Decisions" when handling complicated macros Merged

#92216 [llvm-cov][MC/DC] "Branch not found in Decisions" when handling variadic macros Confirmed

#95831 [clang][CoverageMapping] Assertion fails when headers included in function bodies Reported

#96016 [llvm-cov] let text mode divider honor --show-branch-summary --show-region-summary etc Merged

#97385 [llvm-cov][MC/DC] "Out-of-bounds Bit access." when run with binary profile correlation Confirmed

#101241 [CoverageMapping] fail to evaluate "constant folded" conditions at compile time Confirmed

… … …

23



Our Contributions to LLVM

• Important bugs in LLVM MC/DC found on Linux
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Our Contributions to LLVM

• Important bugs in LLVM MC/DC found on Linux

• Even with these fixes, Clang/LLVM coverage does not work out-of-
the-box to measure code coverage of the Linux kernel

struct Foo foo = {
.field1 = ({

switch (123) {
case 123:

break;
}
456;

}),
};

Reduced kernel code

• #86998 (and fix in #89564)
• Exposed by fs/coredump.c
• A non-standard C syntax

#define FOO(x) foo_##x

int a, foo_b;

if (a && FOO(b)) { ... }

• #87000 (and fix in #89869)
• Exposed by drivers/iommu/intel/perfmon.c 
• Complicated macros

Reduced kernel code
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Kernel Support for Linux MC/DC
• Challenge: export in-memory counters and bitmaps

• Straightforward for user-space applications: just write to a file at the same 
directory as the executable

• In a freestanding environment, like OS kernels: no concept of “current directory”
• Solution: write to a pseudo file system instead

• Also the practice of kernel/gcov/
• Implementation of kernel/llvm-cov/

• Kbuild support
• Debugfs interface and profile serialization

• Reuse part of patch by Sami Tolvanen et al. “pgo: add clang's Profile Guided Optimization 
infrastructure patches” [1] with different goals: performance optimization vs. precise 
coverage for high assurance

[1] https://lore.kernel.org/lkml/20210407211704.367039-1-morbo@google.com/
25

https://lore.kernel.org/lkml/20210407211704.367039-1-morbo@google.com/
https://lore.kernel.org/lkml/20240824230641.385839-1-wentaoz5@illinois.edu/


Kernel Support for Linux MC/DC
• Challenge: export in-memory counters and bitmaps

• Straightforward for user-space applications: just write to a file at the same 
directory as the executable

• In a freestanding environment, like OS kernels: no concept of “current directory”
• Solution: write to a pseudo file system instead

• Also the practice of kernel/gcov/
• Implementation of kernel/llvm-cov/

• Kbuild support
• Debugfs interface and profile serialization

• Reuse part of patch by Sami Tolvanen et al. “pgo: add clang's Profile Guided Optimization 
infrastructure patches” [1] with different goals: performance optimization vs. precise 
coverage for high assurance

• RFC “Enable measuring the kernel's Source-based Code Coverage and MC/DC 
with Clang” [2]

[1] https://lore.kernel.org/lkml/20210407211704.367039-1-morbo@google.com/
[2] https://lore.kernel.org/lkml/20240824230641.385839-1-wentaoz5@illinois.edu/ 
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Exercise Various Kernel Testing Techniques

• Coverage report with different kernel test harnesses:

26

MC/DCBranch coverageLine coverageFunction 
coverage Kernel test harnesses

4.58%13.61%19.80%28.05%Boot

5.23% 15.62% 22.06% 30.60% ↑0.65pp↑2.01pp↑2.26pp↑2.55ppBoot

9.68% 22.29% 29.95% 39.29% ↑4.45pp↑6.67pp↑7.89pp↑8.69ppBoot + KUnit + Kselftest + LTP

+ KUnit
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Summary and Future Work

• We can measure MC/DC of Linux kernel
• Tested with different kernel branches
• RFC “Enable measuring the kernel's Source-based Code Coverage and MC/DC 

with Clang” 
Next steps
• Test the tools more thoroughly and keep improving them

• Check reliability and accuracy of the current implementation
• Improve the presentation of data in the report
• Compare with proprietary tools like VectorCAST
• DO-330 Tool Qualification for llvm-cov

• Other objectives for certifying Linux
• Data coupling and control coupling coverage (DO-178C objective 8)
• Object coverage (DO-178C objective 9)

Visit links in slides 
and give feedback
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