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— Provide efficient notification about events (primarily changes) happening in the file system
– Useful for desktop search, file system backup, file open dialogues, …
– Speeds up blunt approaches like repeatedly calling stat(2)

— Fanotify also allows watching for and mediating file access and some other file system events

 

Motivation
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— Dnotify
– Merged during 2.4 times
– Only notification about changes in directories
– Require open directory
– Notification through signal (something has changed)

— Inotify
– Merged in 2.6.13 (2005)
– Monitoring files & directories
– No need to keep files or directories open
– Problems with watching large directory hierarchies and identifying changed objects

History
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Dnotify -> inotify -> fanotify
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— Fanotify
– Merged in 2.6.36 (2010)
– Originally driven by needs of antivirus scanners
– Trying to address problems with watching large hierarchies and accessing file / directory 

referenced in the event

History
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Dnotify -> inotify -> fanotify
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Basic fanotify 
functionality
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— fanotify_init(flags, event_f_flags)
– Creates notification group and returns a file descriptor for it
– Full functionality requires CAP_SYS_ADMIN, inotify-like features available without it
– flags specify:

● Type of notification group (FAN_CLASS_NOTIF, FAN_CLASS_CONTENT, 
FAN_CLASS_PRE_CONTENT)

● Information returned with each notification event (FAN_REPORT_FID, 
FAN_REPORT_NAME, …)

● Notification group limits (FAN_UNLIMITED_QUEUE, FAN_UNLIMITED_MARKS)

Initialization
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— fanotify_mark(fanotify_fd, flags, mask, dirfd, pathname)
– Places notification mark on file, directory, mountpoint
– Originally supported events: FAN_ACCESS, FAN_MODIFY, FAN_OPEN, FAN_OPEN_EXEC, 

FAN_CLOSE_NOWRITE, FAN_CLOSE_WRITE
– Not useful much for directories
– FAN_EVENT_ON_CHILD in mask – report events for immediate children of a directory
– Ignore masks (FAN_MARK_IGNORE_MASK flag)

● Allows to ignore specified events on file / directory / mount
● By default gets cleared on first modification event – need 

FAN_MARK_IGNORED_SURV_MODIFY

Placing notification marks
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— Read from notification group file descriptor yields:

Receiving events
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struct fanotify_event_metadata {
  __u32 event_len;
  __u8 vers;
  __u8 reserved;
  __u16 metadata_len;
  __u64 mask;
  __s32 fd;
  __s32 pid;
}
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— FAN_OPEN_PERM, FAN_ACCESS_PERM, FAN_OPEN_EXEC_PERM (since 5.0)
— Allow mediating access to files (antivirus scanners use this)

– Syscall is paused until we get reply to fanotify event. Based on reply syscall continues or 
returns with error

— Reply is sent to kernel by writing to notification group descriptor:

Permission events
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struct fanotify_response {
  __s32 fd;
  __u32 response;
}
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Better filesystem 
monitoring
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— New mark type: FAN_MARK_FILESYSTEM (since 4.20)
– Watching full filesystem independently of a mountpoint
– Cannot use file descriptor to identify file from which event originates
– File identified with a fsid + file handle pair

● All filesystems extended to provide a meaningful fsid and ability to get a file handle 
for an inode

Filesystem wide monitoring
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— Additional information reported with events

Supplemental event information
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struct fanotify_event_metadata {
  __u32 event_len;
  __u8 vers;
  __u8 reserved;
  __u16 metadata_len;
  __u64 mask;
  __s32 fd;
  __s32 pid;
}

Mostly useless

Extremely useful
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— Needs to be explicitly enabled on fanotify_init(2) time
– FAN_REPORT_FID, FAN_REPORT_DIR_FID, FAN_REPORT_TARGET_FID, FAN_REPORT_NAME

— Supplemental information appended after initial event structure
– event_len in initial structure shows total length
– Each supplemental record has a header:

Supplemental event information
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struct fanotify_event_info_header {
  __u8 info_type;
  __u8 pad;
  __u16 len;
}
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— Return fsid + file handle to identify file / directory in event
— Used instead of open file descriptor

– No need to open files – faster, does not pin files in memory
– Works for unprivileged users
– Works for all types of events
– Users with CAP_DAC_READ_SEARCH can use open_by_handle(2) to open

FAN_REPORT_FID
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struct fanotify_event_info_fid {
  struct fanotify_event_info_header hdr;
  __kernel_fsid_t fsid;
  unsigned char handle[0];
}
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— Similar to FAN_REPORT_FID but reports directory associated with the event
– Reports parent directory for events on files
– Identical to FAN_REPORT_FID for events on directories
– Sometimes not available (e.g. for unlinked inodes or root directory)

— Useful for reconstructing paths where event happened

FAN_REPORT_DIR_FID
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— Reports name of object inside a directory identified by DIR_FID
– Requires FAN_REPORT_DIR_FID
– Name is “.” for events on directories
– open_by_handle_at(2) can be used to open the object

FAN_REPORT_NAME
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— Events informing about changes to directories
— FAN_CREATE, FAN_DELETE, FAN_DELETE_SELF, FAN_ATTRIB, FAN_MOVED_FROM, FAN_MOVED_TO, 

FAN_MOVED_SELF, FAN_RENAME
– FAN_RENAME combines information about source and target directories and names
– FAN_REPORT_TARGET_FID may be used to provide information about child of the directory 

affected by the event
— Allows efficient monitoring of large directory hierarchy for changes
— With these events fanotify achieved feature parity with inotify

Directory events (since 5.1)
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— Normally, notification marks pin inodes in memory
– Impractical when we need to mark lots of inodes (e.g. with ignore marks)

— Mark can be created with FAN_MARK_EVICTABLE flag to avoid pinning inode
– Mark is freed when inode is freed from memory

Evictable marks (since 5.19)
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Hierarchical storage 
management using 
fanotify
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— Fill in filesystem on fast storage on demand from slow storage
– Local cache of website tree
– Local cache of a network filesystem

— Slow storage access transparent
— Approaches

– Fill file contents on open
– Fill file contents on read / write…
– Fill directory contents on open

— Existing Linux solutions
– FUSE – very flexible, hard to achieve “local filesystem” performance for cached data
– Fscache – tied to couple network filesystems

HSM Basics
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— Kind of similar to permission events
– System call is blocked until userspace replies to the event

— Require the highest FAN_CLASS_PRE_CONTENT notification class of the notification group
– Which means CAP_SYS_ADMIN is required

— FAN_PRE_ACCESS and FAN_PRE_MODIFY events
– Generated on read, write (including countless variants), open but also during page faults
– Events include IO range
– Generated outside of locks (including fs freezing prevention)

— Currently enabled for xfs, btrfs, ext4, bcachefs
– Enabling for other filesystems is mostly a matter of demand and testing

Fanotify pre-content events (staged for 6.12)
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— Daemon watching for FAN_PRE_ACCESS / FAN_PRE_MODIFY events on the whole filesystem
– Keeps track of filled in content for a file
– Fills in content for given range when receiving event before acknowledging it
– Needs to be careful to fill in content without generating events

● Separate mount for filling in with ignore mark
– Once the whole file is filled in, inode can be marked with ignore mark

— Data consistency relies on the daemon running
– Plan to block filesystem access unless HSM events are handled

— Implementation (with preliminary patches) already used in a few deployments

HSM implementation using fanotify
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Outlook
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— Loose ends with hierarchical storage management
– Making filesystem safe in case of daemon crashes
– Handling of directories

— More efficient watching of directory subtrees
– eBPF ignore marks?
– Marks which automatically copy themselves from the parent?

— Persistent change notification service

Outlook
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What you might want to work on ;-)
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