
Copyright © SUSE

Fanotify
Linux file system notification subsystem
Jan Kára <jack@suse.cz>
SUSE

mailto:jack@suse.cz

Copyright © SUSECopyright © SUSE

A bit of history
Basic fanotify functionality
Permission events
File system-wide monitoring
HSM events
Future outlook

Overview

Copyright © SUSE

A bit of history

3

Copyright © SUSE

— Provide efficient notification about events (primarily changes) happening in the file system
– Useful for desktop search, file system backup, file open dialogues, …
– Speeds up blunt approaches like repeatedly calling stat(2)

— Fanotify also allows watching for and mediating file access and some other file system events

Motivation

4

Copyright © SUSE

— Dnotify
– Merged during 2.4 times
– Only notification about changes in directories
– Require open directory
– Notification through signal (something has changed)

— Inotify
– Merged in 2.6.13 (2005)
– Monitoring files & directories
– No need to keep files or directories open
– Problems with watching large directory hierarchies and identifying changed objects

History

5

Dnotify -> inotify -> fanotify

Copyright © SUSE

— Fanotify
– Merged in 2.6.36 (2010)
– Originally driven by needs of antivirus scanners
– Trying to address problems with watching large hierarchies and accessing file / directory

referenced in the event

History

6

Dnotify -> inotify -> fanotify

Copyright © SUSE

Basic fanotify
functionality

7

Copyright © SUSE

— fanotify_init(flags, event_f_flags)
– Creates notification group and returns a file descriptor for it
– Full functionality requires CAP_SYS_ADMIN, inotify-like features available without it
– flags specify:

● Type of notification group (FAN_CLASS_NOTIF, FAN_CLASS_CONTENT,
FAN_CLASS_PRE_CONTENT)

● Information returned with each notification event (FAN_REPORT_FID,
FAN_REPORT_NAME, …)

● Notification group limits (FAN_UNLIMITED_QUEUE, FAN_UNLIMITED_MARKS)

Initialization

8

Copyright © SUSE

— fanotify_mark(fanotify_fd, flags, mask, dirfd, pathname)
– Places notification mark on file, directory, mountpoint
– Originally supported events: FAN_ACCESS, FAN_MODIFY, FAN_OPEN, FAN_OPEN_EXEC,

FAN_CLOSE_NOWRITE, FAN_CLOSE_WRITE
– Not useful much for directories
– FAN_EVENT_ON_CHILD in mask – report events for immediate children of a directory
– Ignore masks (FAN_MARK_IGNORE_MASK flag)

● Allows to ignore specified events on file / directory / mount
● By default gets cleared on first modification event – need

FAN_MARK_IGNORED_SURV_MODIFY

Placing notification marks

9

Copyright © SUSE

— Read from notification group file descriptor yields:

Receiving events

10

struct fanotify_event_metadata {
 __u32 event_len;
 __u8 vers;
 __u8 reserved;
 __u16 metadata_len;
 __u64 mask;
 __s32 fd;
 __s32 pid;
}

Copyright © SUSE

— FAN_OPEN_PERM, FAN_ACCESS_PERM, FAN_OPEN_EXEC_PERM (since 5.0)
— Allow mediating access to files (antivirus scanners use this)

– Syscall is paused until we get reply to fanotify event. Based on reply syscall continues or
returns with error

— Reply is sent to kernel by writing to notification group descriptor:

Permission events

11

struct fanotify_response {
 __s32 fd;
 __u32 response;
}

Copyright © SUSE

Better filesystem
monitoring

12

Copyright © SUSE

— New mark type: FAN_MARK_FILESYSTEM (since 4.20)
– Watching full filesystem independently of a mountpoint
– Cannot use file descriptor to identify file from which event originates
– File identified with a fsid + file handle pair

● All filesystems extended to provide a meaningful fsid and ability to get a file handle
for an inode

Filesystem wide monitoring

13

Copyright © SUSE

— Additional information reported with events

Supplemental event information

14

struct fanotify_event_metadata {
 __u32 event_len;
 __u8 vers;
 __u8 reserved;
 __u16 metadata_len;
 __u64 mask;
 __s32 fd;
 __s32 pid;
}

Mostly useless

Extremely useful

Copyright © SUSE

— Needs to be explicitly enabled on fanotify_init(2) time
– FAN_REPORT_FID, FAN_REPORT_DIR_FID, FAN_REPORT_TARGET_FID, FAN_REPORT_NAME

— Supplemental information appended after initial event structure
– event_len in initial structure shows total length
– Each supplemental record has a header:

Supplemental event information

15

struct fanotify_event_info_header {
 __u8 info_type;
 __u8 pad;
 __u16 len;
}

Copyright © SUSE

— Return fsid + file handle to identify file / directory in event
— Used instead of open file descriptor

– No need to open files – faster, does not pin files in memory
– Works for unprivileged users
– Works for all types of events
– Users with CAP_DAC_READ_SEARCH can use open_by_handle(2) to open

FAN_REPORT_FID

16

struct fanotify_event_info_fid {
 struct fanotify_event_info_header hdr;
 __kernel_fsid_t fsid;
 unsigned char handle[0];
}

Copyright © SUSE

— Similar to FAN_REPORT_FID but reports directory associated with the event
– Reports parent directory for events on files
– Identical to FAN_REPORT_FID for events on directories
– Sometimes not available (e.g. for unlinked inodes or root directory)

— Useful for reconstructing paths where event happened

FAN_REPORT_DIR_FID

17

Copyright © SUSE

— Reports name of object inside a directory identified by DIR_FID
– Requires FAN_REPORT_DIR_FID
– Name is “.” for events on directories
– open_by_handle_at(2) can be used to open the object

FAN_REPORT_NAME

18

Copyright © SUSE

— Events informing about changes to directories
— FAN_CREATE, FAN_DELETE, FAN_DELETE_SELF, FAN_ATTRIB, FAN_MOVED_FROM, FAN_MOVED_TO,

FAN_MOVED_SELF, FAN_RENAME
– FAN_RENAME combines information about source and target directories and names
– FAN_REPORT_TARGET_FID may be used to provide information about child of the directory

affected by the event
— Allows efficient monitoring of large directory hierarchy for changes
— With these events fanotify achieved feature parity with inotify

Directory events (since 5.1)

19

Copyright © SUSE

— Normally, notification marks pin inodes in memory
– Impractical when we need to mark lots of inodes (e.g. with ignore marks)

— Mark can be created with FAN_MARK_EVICTABLE flag to avoid pinning inode
– Mark is freed when inode is freed from memory

Evictable marks (since 5.19)

20

Copyright © SUSE

Hierarchical storage
management using
fanotify

21
Photo by: Gerhard Marcks

Copyright © SUSE

— Fill in filesystem on fast storage on demand from slow storage
– Local cache of website tree
– Local cache of a network filesystem

— Slow storage access transparent
— Approaches

– Fill file contents on open
– Fill file contents on read / write…
– Fill directory contents on open

— Existing Linux solutions
– FUSE – very flexible, hard to achieve “local filesystem” performance for cached data
– Fscache – tied to couple network filesystems

HSM Basics

22

Copyright © SUSE

— Kind of similar to permission events
– System call is blocked until userspace replies to the event

— Require the highest FAN_CLASS_PRE_CONTENT notification class of the notification group
– Which means CAP_SYS_ADMIN is required

— FAN_PRE_ACCESS and FAN_PRE_MODIFY events
– Generated on read, write (including countless variants), open but also during page faults
– Events include IO range
– Generated outside of locks (including fs freezing prevention)

— Currently enabled for xfs, btrfs, ext4, bcachefs
– Enabling for other filesystems is mostly a matter of demand and testing

Fanotify pre-content events (staged for 6.12)

23

Copyright © SUSE

— Daemon watching for FAN_PRE_ACCESS / FAN_PRE_MODIFY events on the whole filesystem
– Keeps track of filled in content for a file
– Fills in content for given range when receiving event before acknowledging it
– Needs to be careful to fill in content without generating events

● Separate mount for filling in with ignore mark
– Once the whole file is filled in, inode can be marked with ignore mark

— Data consistency relies on the daemon running
– Plan to block filesystem access unless HSM events are handled

— Implementation (with preliminary patches) already used in a few deployments

HSM implementation using fanotify

24

Copyright © SUSE

Outlook

25

Copyright © SUSE

— Loose ends with hierarchical storage management
– Making filesystem safe in case of daemon crashes
– Handling of directories

— More efficient watching of directory subtrees
– eBPF ignore marks?
– Marks which automatically copy themselves from the parent?

— Persistent change notification service

Outlook

26

What you might want to work on ;-)

Copyright © SUSE

© SUSE LLC. All Rights Reserved. SUSE and the
SUSE logo are registered trademarks of SUSE
LLC in the United States and other countries.
All third-party trademarks are the property of
their respective owners.

For more information, contact SUSE at:

+1 800 796 3700 (U.S./Canada)

Frankenstrasse 146

90461 Nürnberg

www.suse.com

Thank you

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

