
A case for using para-virtualized
scheduling information with

sched_ext schedulers
Himadri CHHAYA-SHAILESH

Jean-Pierre LOZI
Julia LAWALL

1

Context: Dual level of task scheduling for VM workloads

2

Phantom vCPU

Context: Para-virtualized scheduling information for
guest Parallel Application Runtimes (PARs)

● Problem
Degree of Parallelization (DoP) is determined by the number of vCPUs in the guest, but one or many
vCPUs might be phantoms on the host

● Impact
Suboptimal performance of guest parallel applications, especially when overload occurs on the host

● Solution / Policy
Aggregate scheduling information about vCPUs on the host, and use it to adjust the DoP in the guest
i.e. curr_dop = prev_dop - avg_phantoms + avg_idle_pcpus

● Implementation
○ Target PAR: libgomp — GCC's implementation of OpenMP
○ Implemented by modifying the OMP_DYNAMIC interface

3

 Experiment set-up

● Host
Intel Xeon Gold 5220, 1-socket, 18 cores, 2 threads/core (36 pCPUs), 96 GB, Debian-testing

● Guest
1-socket, 36 cores, 1 thread/core (36 vCPUs), 50 GB, Debian-12

● Host scheduler
EEVDFS from linux-kernel v6.11-rc4 (from the sched_ext tree)

● Guest scheduler:
EEVDFS from linux-kernel v6.6.16 (from the stable tree)

● QEMU v7.2.2 (Debian 1:7.2+dfsg-7)

● libgomp from GCC-12

4

VM workload: UA (input class B) from NPB3.4-OMP

5

● Categorized as a benchmark for unstructured computation, parallel I/O, and data movement

● Consists of three major loops, implemented with a total of 38,768 internal barriers

● Worker threads can spin (OMP_WAIT_POLICY=active) or block (OMP_WAIT_POLICY=passive) upon
reaching a barrier while waiting for other threads

Spinning vs Blocking

6

● Spinning is faster than blocking if the host is non-overloaded, i.e. there are no phantom vCPUs
○ OMP_WAIT_POLICY=active: 9.68 ± 0.04 seconds (1.80x)
○ OMP_WAIT_POLICY=passive: 17.43 ± 0.09 seconds

● The performance of spinning suffers greatly in comparison to blocking if the host is overloaded
i.e. there are phantom vCPUs
○ On a periodically overloaded host,
■ OMP_WAIT_POLICY=active: 19.95 ± 0.5 seconds (0.48x)
■ OMP_WAIT_POLICY=passive: 22.43 ± 0.09 seconds (0.78x)

● Degradation in spinning performance increases with increase in number of phantom vCPUs

● TL;DR We want to use spinning while minimizing the number of phantom vCPUs

Periodically overloaded EEVDFS-host

7

EEVDFS-host: Dynamic adaptation of DoP in the guest

8

 EEVDFS-host, EEVDFS-guest

● OMP_WAIT_POLICY=active: 19.95 ± 0.5 seconds

● OMP_WAIT_POLICY=passive: 22.43 ± 0.09 seconds

● OMP_WAIT_POLICY=active + Dynamic adaptation of DoP: 13.02 ± 0.23 seconds (1.53x)

9

scx_central-host: Dynamic adaptation of DoP in the guest

10

scx_central-host, EEVDFS-guest

● OMP_WAIT_POLICY=active: 19.79 ± 0.6 seconds

● OMP_WAIT_POLICY=passive: 32.65 ± 0.08 seconds

● OMP_WAIT_POLICY=active + Dynamic adaptation of DoP: 12.71 ± 0.05 seconds (1.56x)

11

Question: What is the right way to make this policy
available for sched_ext schedulers?

12

1. Provide the policy as a patch for the sched_ext kernel

2. Provide the policy as a set of eBPF programs

3. Provide an example scx scheduler that includes the policy

Thoughts?

Requirements for the example scx scheduler

● It needs to know the vcpu_id associated with the task_struct of the vCPU threads

● It needs to set-up and access the shared memory between the host and the guest schedulers

● It needs to detect precisely when a vCPU becomes a phantom, and when a pCPU becomes idle
i.e. precise timestamps for context-switches and wake-ups

● It needs to process the history of context-switches and wake-ups involving phantom vCPUs and idle
pCPUs at the end of every scheduler tick

Contact:
himadrics@pm.me 13

How much of it is feasible?

