

Design a user-space framework to
implement sched_ext schedulers

Andrea Righi
Linux Plumbers Conference 2024 | Vienna

scx_rustland_core
● Abstraction layer over sched_ext

● Interface between BPF/sched_ext and user space

● Kernel scheduler is a user-space process

● Can be used in standalone Rust projects

● GPLv2 license

Goal
● User-space integration (libs, services, ...)

● Better debugging and observability

● Fast edit/compile/test iterations

● Quickly prototype and test ideas

● Lower the barrier of scheduling development

BPF User spaceKernel

Architecture

scx_rustland_core
(backend)

libbpf
BPF_MAP_TYPE_RINGBUF

sched_ext

BPF_MAP_TYPE_USER_RINGBUF

libbpf-rs
scx callbacks

(enqueue, dispatch)

scx_rustland_core
(frontend)

User-space scheduler

Workflow
● sched_ext callback intercepts tasks that want to run
● Tasks are added to a BPF_MAP_TYPE_RINGBUF
● BPF component schedules a user-space task (scheduler)
● User-space scheduler consumes tasks from the ringbuf and

assigns a CPU and time slice to each one of them
● Tasks are added to a BPF_MAP_TYPE_USER_RINGBUF
● BPF component consumes tasks from the user ringbuf and

dispatches

scx_rustland_core API
● struct BpfScheduler

– Task management
● dequeue_task(&mut self) -> Result<Option<QueuedTask>, i32>

– consume a task that wants to run
● select_cpu(&mut self, pid: i32, cpu: i32, flags: u64) -> i32

– find an idle CPU for the task
● dispatch_task(&mut self, task: &DispatchedTask) -> Result<(), Error>

– dispatch a task
– Completion notification

● notify_complete(&mut self, nr_pending: u64)
– notify BPF component that some tasks have been dispatched

struct QueuedTask {
 pub pid: i32, // pid that uniquely identifies a task
 pub cpu: i32, // CPU previously used by the task
 pub sum_exec_runtime: u64, // Total cpu time in nanoseconds
 pub weight: u64, // Task priority [1..10000] (default is 100)
}

struct DispatchedTask {
 pub pid: i32, // pid that uniquely identifies a task
 pub cpu: i32, // target CPU selected by the scheduler
 pub flags: u64, // special dispatch flags
 pub slice_ns: u64, // time slice in nanoseconds assigned to the task
 pub vtime: u64, // send task's vruntime/deadline to the BPF dispatcher
}

Rust data types

Issues
● User-space scheduler must not be blocked
● Page faults are bad

– Custom memory allocator in Rust (mlocked arena)
– vm.compact_unevictable_allowed=0

● Multi-threading is tricky [SOLVED]
● Overhead

– There is some communication overhead (but it’s not that relevant)
● Less kernel visibility

– CPU state (e.g., idle cpumasks)

Future plans
● Standardize the user-space framework APIs
● Introduce concept of scheduling domains:

– Allocate/configure cpumask from user-space
– Attach a task to a domain (domain ID)

● Call scx_bpf_dispatch() directly from user-space
● Achieve performance identical to BPF/hybrid schedulers

References
● scx_rust_scheduler: simple FIFO scheduler template

– https://github.com/arighi/scx_rust_scheduler

● scx_rustland_core: main repo
– https://github.com/sched-ext/scx/blob/main/rust/

scx_rustland_core/README.md

Questions?

Andrea Righi
Linux Plumbers Conference 2024 | Vienna

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

