

ublk based zero copy I/O - use case in Android
Akilesh Kailash (akailash@google.com)

Android OTA - Storage Stack - Overview

• Userspace snapshots
• dm-user: Out of tree kernel driver in ACK.

Routes I/O request from verity to
userspace daemon

• Snapuserd daemon: Snapshot logic and
snapshot merge

• Root partition mounted off dm-user until
snapshot merge is completed

/system (Ext4 or erofs)

dm-verity

dm-user

Snapuserd
(user-space daemon)

dm-linear
(Android OTA block device

format)

dm-linear
(system_base)

Android OTA Format

• Encodes three block-level operations:
• ZERO: The destination block is zeroed.
• COPY: The destination block is copied from

a pre-existing block.
• REPLACE: The destination block is replaced with

new data. gz / lz4 compressed or could be
uncompressed

• XOR: XOR the destination block with source block.
• The metadata operations of the OTA format is stored in

a block device.
• Will be used by userspace daemon when snapshots are

constructed

I/O Path for COPY operation - 4k block size

• COPY operation overhead in the I/O
path

• Data moves back and forth between
kernel and userspace

• ~50% of CPU cycles spent in reading
data from source image into userspace.

• ~15% of CPU cycles spent in sending
the data back to kernel from the
userspace daemon

• Impacts OTA boot time and application
I/O performance until snapshot merge
is complete

Perfetto - I/O Path for COPY operation - a 4K I/O request

• ~100us time spent by application (fio) waiting for one 4k I/O to complete

• Userspace daemon (ReadWorker) is again blocked reading from underlying block device

• The actual I/O on underlying UFS is ~23us

ublk - userspace block device - zero copy

• Evaluate ongoing upstream patch - ublk zero copy based on io_uring providing sqe group buffer from Ming Lei
• https://lore.kernel.org/io-uring/80d4150e-a4fe-4c05-be23-4ceebd40d7fd@gmail.com/T/#md440a9cebf9a1ed8e5cc204e6dcfdaa2f898e7a4

• ublk zero copy partially addresses some of the I/O path overhead - primarily for COPY operations in the OTA format

• Goal is to cut down the existing I/O path overhead for both COPY and REPLACE operations which accounts to 75% of operations

• V5 version of the patch evaluated on Pixel 6 running Android Mainline
• Work in progress to move storage stack towards ublk replacing dm-user.
• Zero copy effort helps in cutting down unnecessary data movement between userspace and kernel.
• Primarily improving Android boot time and application performance until snapshot merge is complete.

https://lore.kernel.org/io-uring/80d4150e-a4fe-4c05-be23-4ceebd40d7fd@gmail.com/T/#md440a9cebf9a1ed8e5cc204e6dcfdaa2f898e7a4

I/O Path for COPY operation - 4k block size

• Data path is simple

• Two SQE entries - Lead SQE provides
kbuf through io_import_group_kbuf

• One syscall completing entire I/O
(io_uring_submit_and_wait)

Perfetto - I/O Path for COPY operation - a 4K I/O request

• No more additional I/O path overhead in the daemon

• Reduce CPU contention by more than 50%

• Android boot time

Caveats / Challenges

• How to handle REPLACE and ZERO operations through zero copy ?

• REPLACE operations are blocks which are compressed (lz4 or zstd) and stored in block device.

• The I/O path is similar to COPY operation but the data is retrieved from compressed block device.

• Currently, data is transferred to userspace, de-compressed in userspace and then data is transferred back to kernel.

• Similar I/O path overhead as observed on COPY operations.

• ublk zero copy would help but the data has to be decompressed in the kernel after importing kbuf from io_import_group_kbuf.
• This will significantly help Full OTA which primarily consists of all REPLACE blocks.
• Will further reduce the CPU contention post boot.

• Thoughts / Questions ?

