
Bring up devices
with

16kb support

Juan Yescas & Kalesh Singh
Google

AOSP Architecture

Native daemons
and libraries

Only the layers
in green

need to change

Native daemons
and libraries

And Bootloader

Why all the layers are affected?

ARM 64 Architecture Overview

Where is the pointer to the page tables located?

In the Translation Table Base Register (TTBR)

How many TTBRs there could be in the ARMv8
implementations per core?

TTBR0_EL1 -> User Space
TTBR1_EL1 -> Linux Kernel
TTBR0_EL2 -> Hypervisor
TTBR0_EL3 -> Secure World
VTTBR_EL2 -> Second Stage Translation
 to support virtualization

System
on

Chip

Bootloader: Supporting 16kb page sizes

Issue

Every exception level (EL0-EL3) can have a different
page size configuration.

How do we share memory between exception levels?

Solution
As per the ARM Firmware Framework for Arm A-profile
(section 4.6 Memory granularity and alignment), these
constraints have to be met:

- If X is the larger translation granule size used by the two
translation regimes, then the size of the memory region
must be a multiple of X.

- The base address of the memory region must be aligned to
X.

- Size of a memory region must be a multiple of 16KiB and
expressed as a count of 4KiB pages.

https://developer.arm.com/documentation/den0077/latest/

Bootloader: Example

Example
- EL1 wants to share 32768 (BUFFER_SIZE) with EL3.
- EL3 has 4096 granule size (EL3_PAGE_SIZE)
- EL1 has 16394 granule size (EL1_PAGE_SIZE)
- BUFFER_SIZE has to be aligned to EL1_PAGE_SIZE (32768 % 16394 == 0)
- MEMORY_REGION_UNIT_SIZE = 4096

The number of “page counts” to share with EL3 is given by the formula:

EL3_PAGE_COUNT = (BUFFER_SIZE / MEMORY_REGION_UNIT_SIZE)

 = (32768/4096) = 8

The “page counts” to share with EL3 is 8. This number can pass through a SMC call to EL3.

Driver issues: IOMMU & Contiguous Memory Allocator (CMA)

Issue - IOMMU
When the IOMMU was set up, PAGE_SIZE was used.
This caused the devices connected to the IOMMU
didn’t work, or in the worst case, the kernel
crashes.

Solution - IOMMU
Define a constant for the IOMMU page size. For
example:

#define IOMMU_PAGE_SIZE 4096
#define IOMMU_BASE_SHIFT 12

Issue - CMA allocations failing
Allocations from reserved memory
“shared-dma-pool” were failing.

Solution - Contiguous Memory Allocator
Align memory in “shared-dma-pool” to multiple of
HUGE PAGE SIZE. In this case 32MiB. In 4KiB
base-page-size system 4MiB is required.

https://elixir.bootlin.com/linux/v6.1.107/source/arch/arm64/include/asm/page-def.h#L15

Driver issues: Getting free memory

Issue - Allocation extra memory due wrong assumptions
When there is the assumption that PAGE_SIZE = 4096, we can allocate more memory from what it is
needed.

// Allocate 256KiB

void *buff = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, 6);

Solution - Allocation extra memory due wrong assumptions

Use get_order.

const int sz_256kb = 1 << 18;

void *buff = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, get_order(sz_256kb));

https://elixir.bootlin.com/linux/v6.10.8/source/include/asm-generic/getorder.h#L29

struct request struct req_iterator

 ______________ __________________________

 | | | struct bvec_iter iter; |

 | *bio | | struct bio *bio; |

 |____________| |________________________|

 |

 |

 |

 struct bio struct bio struct bio struct bio

 ______________ ______________ ______________ ______________

 | | | | | | | |

 | *bi_next |______| *bi_next |______| *bi_next |______| *bi_next |______ NULL

 | bi_iter | | bi_iter | | bi_iter | | bi_iter |

 | *bi_io_vec | | *bi_io_vec | | *bi_io_vec | | *bi_io_vec |

 |____________| |____________| |____________| |____________|

 | | | |

 | | | |

 | |

 struct bio_vec[] struct bio_vec[]

 ______________ --------- ______________ ---------

 | |_____| index | struct page | |_____| index | struct page

 | *bv_page | --------- | *bv_page | ---------

 |____________| --------- |____________| ---------

 | |_____| index | struct page | |_____| index | struct page

 | *bv_page | --------- | *bv_page | ---------

 |____________| --------- |____________| ---------

 | |_____| index | struct page | |_____| index | struct page

 | *bv_page | --------- | *bv_page | ---------

 |____________| |____________| ---------

 | |_____| index | struct page

 | *bv_page | ---------

 |____________|

Linux Block Layer: Block I/0 Request

Sector: Basic unit of the
block devices. It is generally
512 bytes.

Block size: Basic unit of the
file system. In Linux:

 block size <= PAGE_SIZE

Segment: It is a page or
portion of a page that
contains data of adjacent
sectors in disk.

Issue - segment smaller than PAGE_SIZE

Some UFS host controllers don’t follow the Host Controller Interface (HCI).
Some UFS host controllers don’t support 16384 segments.

Solution

Add support for segments smaller than PAGE_SIZE in the block layer.

https://r.android.com/q/topic:%22android15-6.6-ufs%22
https://r.android.com/q/topic:%22android15-6.1-ufs%22
https://r.android.com/q/topic:%22ufs-5-15-patches%22

Linux Block Layer: Small Segment Issues

https://r.android.com/q/topic:%22android15-6.6-ufs%22
https://r.android.com/q/topic:%22android15-6.1-ufs%22
https://r.android.com/q/topic:%22ufs-5-15-patches%22

Linux File System: Block Size <= PAGE_SIZE

In Android, there are 3 popular filesystems that support
16kb page sizes:

- ext4
- f2fs
- erofs

Sub-page blocks support

This means that the block size can be smaller or equal to the page size. For
example, ext4 and erofs support sub-page blocks.

For f2fs the block size assumed 4096, support was added to relax this to
block-size == page-size

erofs 4KiB Block Size 16KiB Block Size

4KiB PAGE_SIZE Supported Not supported

16KiB PAGE_SIZE Supported Supported

f2fs 4KiB Block Size 16KiB Block Size

4KiB PAGE_SIZE Supported Not supported

16KiB PAGE_SIZE Not supported Supported

ext4 4KiB Block Size 16KiB Block Size

4KiB PAGE_SIZE Supported Not supported

16KiB PAGE_SIZE Supported Supported

Hardware that does not support 16kb page size

Issue - HW does not support 16kb PAGE_SIZE

The hardware does not support 16kb page size.

Solution

Disable the hw and provide an alternative option if available.

init.compression.rc

on init && property:ro.boot.hardware.cpu.pagesize=4096
 write /sys/block/zram0/hw enable
 write /sys/block/zram0/cpu disable

on init && property:ro.boot.hardware.cpu.pagesize=16384
 write /sys/block/zram0/hw disable
 write /sys/block/zram0/cpu enable

Issue - CSR Registers are 4kb aligned

The Control Status Registers (CSR) are 4kb aligned and the
mailboxes can not be configured when the address is not
16kb multiple.

Solution
Only use the mailboxes that are 16kb aligned.

User Space

Executable
and

Linkable Format (ELF)

Why the shared libraries need to be 16kb elf aligned?

Why the shared libraries need to be 16kb elf aligned?

Android userspace: shared libraries and binaries

Android shared libraries and binaries
In android targets, these build variable have to be set:

PRODUCT_NO_BIONIC_PAGE_SIZE_MACRO := true

PRODUCT_MAX_PAGE_SIZE_SUPPORTED := 16384

https://source.android.com/docs/core/architecture/16kb-page-size/16kb

Vendor shared libraries (prebuilts)
The vendors have to provide the shared libraries compiled
with
 -Wl,-z,max-page-size=16384

https://source.android.com/docs/core/architecture/16kb-page-size/16kb#build-lib-
16kb-alignment

Best practices

Use getpagesize()

Memory map regions multiple of getpagesize()

https://source.android.com/docs/core/architecture/16kb-page-size/16kb
https://source.android.com/docs/core/architecture/16kb-page-size/16kb#build-lib-16kb-alignment
https://source.android.com/docs/core/architecture/16kb-page-size/16kb#build-lib-16kb-alignment

ART and User space memory Allocators

Remove 4096 assumptions from allocators -- scudo,
jemalloc, …

Update ART gerentation of OAT(ELF) images to 16KiB align
the ELF segments.

Best practices

Use getpagesize()

Tools generating ELFs for a different target
machine/architecture, use the max page size of the
supported architectures for maximum portability.

APKs and zip align

Android APKs can be packaged so that uncompressed ELFs
are located at page aligned (4096) boundaries in the zipped
apk.

This is for security and space saving purposes.

zipalign -p -f -v 4 infile.apk outfile.apk

This was done so that the uncompressed ELFs can be
mapped directly for the offset in the zipped APK.

For 16KiB age size the APKs need to use a zip-alignment of
16KiB

zipalign -P 16 -f -v 4 infile.apk outfile.apk

https://developer.android.com/tools/zipalign#usage

Best practices

If using zipalign to align apks, specify the -P 16 option.

https://developer.android.com/tools/zipalign#usage

Questions

Resources

Resources

Platform developers resources

https://source.android.com/docs/core/architecture/16kb-page-size/16kb

Use ARM 64 emulator for 16kb page sizes
https://source.android.com/docs/core/architecture/16kb-page-size/getting-started-cf-arm64-pgagnostic

Use x86-64 emulator for 16kb page sizes
https://source.android.com/docs/core/architecture/16kb-page-size/getting-started-cf-x86-64-pgagnostic

Enable 16kb toggle (switch between 4kb and 16kb kernels)
https://source.android.com/docs/core/architecture/16kb-page-size/16kb-developer-option

Application developers
https://developer.android.com/guide/practices/page-sizes

https://source.android.com/docs/core/architecture/16kb-page-size/16kb
https://source.android.com/docs/core/architecture/16kb-page-size/getting-started-cf-arm64-pgagnostic
https://source.android.com/docs/core/architecture/16kb-page-size/getting-started-cf-x86-64-pgagnostic
https://source.android.com/docs/core/architecture/16kb-page-size/16kb-developer-option
https://developer.android.com/guide/practices/page-sizes

Appendix

