
Snapdragon and Qualcomm branded products are products of Qualcomm Technologies, Inc. and/or its subsidiaries.
Qualcomm patented technologies are licensed by Qualcomm Incorporated.

Supporting generic
restricted dmabuf
heap
Prakash Gupta
Sr. Staff Engineer/Mgr, Qualcomm India

quic_guptap@quicinc.com

Agenda

2

Introduction

Why protected DMA-BUF Heaps?

Generic protected heaps

QCOM secure video playback

3

Introduction - Restricted dmabuf heaps

• DMA-BUFs
• Very useful for sharing buffers between multiple devices, avoiding copies.[1]

• DMA-BUF Heaps
• Provides an userland interface to allocate DMA-BUFs that point to specific types of memory [1]

• Secure DMA-BUF Heaps:
• Should we call - Secure heap/ Restricted heap / Protected heap?
• The specific types of memory here is memory with some restrictions from HLOS access. Eg: HLOS Read-Only, or No HLOS

access allowed

• Methods to restrict buffer access
• External Protection Unit (XPU) [2]
• Type -1 hypervisor stage 2 based restriction

eg: qcom_scm_assign_mem()

[1] https://static.linaro.org/connect/lvc21/presentations/lvc21-120.pdf

[2] https://www.qualcomm.com/content/dam/qcomm-martech/dm-assets/documents/an-introduction-to-access-control-on-qualcomm-snapdragon-platforms.pdf

https://static.linaro.org/connect/lvc21/presentations/lvc21-120.pdf
https://www.qualcomm.com/content/dam/qcomm-martech/dm-assets/documents/an-introduction-to-access-control-on-qualcomm-snapdragon-platforms.pdf

4

Why protected DMA-BUF Heaps?

Use cases requiring protected buffers can take benefit of dmabuf using protected dmabuf heaps:

Below are few examples:

• Secure Video playback
• FastRPC CPZ (Compute Protection Zone) - Video post-processing

These can also be achieved using custom userland/kernel driver interface, there are few challenges.

5

Why protected dma-buf heaps?

• In fastrpc example [1] – dmabuf is allocated by userland from un-restricted heap.

• fastrpc kernel driver protects the buffer with QCOM SCM interface.

• Only kernel interface available to protect the buffer, hence can’t be done by userspace which is allocating the dmabuf.

Without restricted dmabuf heap, clients driver can protect the buffer using custom interface between userland but here client
driver has secure usecase awareness.

• Restricted dmabuf heaps would keep the decision with userland about memory type for pipeline.

• [1] https://github.com/torvalds/linux/blob/master/drivers/misc/fastrpc.c#L817

Stop gap example in absence of restricted dmabuf heaps

6

Downstream Qualcomm Secure DMABUF Heaps

• Secure system heap
• Allocation – system heap
• Buffer protection – QCOM SCM assign

• Secure custom CMA heap
• Allocation – custom cma heap[1]
• Buffer protection – QCOM SCM assign

• Secure carveout heap
• Allocation – carveout bitmap
• Buffer protection – QCOM SCM assign

[1] https://lore.kernel.org/all/20231117100337.5215-1-quic_jasksing@quicinc.com/

7

Vendor DMABUF Heaps

• Taking example of restricted system heap

• Non-protected DMABUF Heap - System heap
• memory_protect/unprotect Methods
• QCOM SCM assign
• OPTEE/Vendor specific buffer protection

• Each vendor would need a separate heap based on memory protection method.
• /dev/dma_heap/qcom,secure-pixel OR
• /dev/dma_heap/vendor,optee

• [1] https://lore.kernel.org/linux-arm-kernel/20231111111559.8218-3-yong.wu@mediatek.com/

• [2] https://lore.kernel.org/linux-arm-kernel/91f0a8cf-3aef-4c54-b4b6-afd76cd5fdc8@quicinc.com/

https://lore.kernel.org/linux-arm-kernel/20231111111559.8218-3-yong.wu@mediatek.com/
https://lore.kernel.org/linux-arm-kernel/91f0a8cf-3aef-4c54-b4b6-afd76cd5fdc8@quicinc.com/

8

Generic restricted heaps –Proposal under discussion

• As discussed earlier, vendors can have different buffer protection methods, but they can use common allocation methods
from SG, CMA.

• [1] had discussed internal ops to allocate and secure restricted heap.

• Subsequently restricted_heap_ops and vendor restricted heaps using these ops are posted [2] [3] [4].

struct restricted_heap_ops {
int (*heap_init)(struct restricted_heap *rheap);
int (*alloc)(struct restricted_heap *rheap, struct restricted_buffer *buf);
void (*free)(struct restricted_heap *rheap, struct restricted_buffer *buf);
int (*restrict_buf)(struct restricted_heap *rheap, struct restricted_buffer *buf);
void (*unrestrict_buf)(struct restricted_heap *rheap, struct restricted_buffer *buf);

};

[1] https://lore.kernel.org/linux-arm-kernel/91f0a8cf-3aef-4c54-b4b6-afd76cd5fdc8@quicinc.com/

[2] https://lore.kernel.org/linux-arm-kernel/20240515112308.10171-6-yong.wu@mediatek.com/

[3] https://lore.kernel.org/linux-arm-kernel/20240720071606.27930-1-yunfei.dong@mediatek.com/#r

[4] https://lore.kernel.org/linux-arm-kernel/20240830070351.2855919-1-jens.wiklander@linaro.org/

https://lore.kernel.org/linux-arm-kernel/91f0a8cf-3aef-4c54-b4b6-afd76cd5fdc8@quicinc.com/
https://lore.kernel.org/linux-arm-kernel/20240515112308.10171-6-yong.wu@mediatek.com/
https://lore.kernel.org/linux-arm-kernel/20240720071606.27930-1-yunfei.dong@mediatek.com/#r
https://lore.kernel.org/linux-arm-kernel/20240830070351.2855919-1-jens.wiklander@linaro.org/

9

Multiplexing heap names

restricted_heap_ops should allow code reuse for common allocation/buffer restriction
methods, but this does add new named heaps per unique allocation/buffer protection
combination.

Another possibility is if restricted named heaps represent usecase rather then exposing
allocation/buffer restriction methods and fragmenting per vendor named heaps.

/dev/dma_heap/svp

10

QCOM secure video playback –building block

1. secure system heap [1] – Posted

2. Secure context bank support [2] – Posted, Note: This introduces method to support restricted buffer translation managed by
HLOS arm-smmu driver.

3. Iris vidc non-secure support. [3] – Posted, Under Review

4. Iris vidc secure support – TBD

[1] https://lore.kernel.org/all/cover.1700544802.git.quic_vjitta@quicinc.com/

[2] https://lore.kernel.org/all/38274eb8-296e-c9c4-7eb1-232b852107cc@quicinc.com/

[3] https://patchwork.kernel.org/project/linux-media/list/?series=883741

https://lore.kernel.org/all/cover.1700544802.git.quic_vjitta@quicinc.com/
https://lore.kernel.org/all/38274eb8-296e-c9c4-7eb1-232b852107cc@quicinc.com/
https://patchwork.kernel.org/project/linux-media/list/?series=883741

Thank you
Nothing in these materials is an offer to sell any of the components or devices referenced herein.

© Qualcomm Technologies, Inc. and/or its affiliated companies. All Rights Reserved.

Qualcomm and Snapdragon are trademarks or registered trademarks of Qualcomm Incorporated.
Other products and brand names may be trademarks or registered trademarks of their respective owners.

References in this presentation to “Qualcomm” may mean Qualcomm Incorporated,
Qualcomm Technologies, Inc., and/or other subsidiaries or business units within
the Qualcomm corporate structure, as applicable. Qualcomm Incorporated includes our licensing business, QTL,
and the vast majority of our patent portfolio. Qualcomm Technologies, Inc., a subsidiary of Qualcomm Incorporated,
operates, along with its subsidiaries, substantially all of our engineering, research and development functions, and
substantially all of our products and services businesses, including our QCT semiconductor business.

Snapdragon and Qualcomm branded products are products of Qualcomm Technologies, Inc. and/or its subsidiaries.
Qualcomm patented technologies are licensed by Qualcomm Incorporated.

Follow us on:
For more information, visit us at qualcomm.com & qualcomm.com/blog

	Title Slide Options
	Slide 1: Supporting generic restricted dmabuf heap

	Agenda and Divider Options
	Slide 2
	Slide 3: Introduction - Restricted dmabuf heaps
	Slide 4: Why protected DMA-BUF Heaps?
	Slide 5: Why protected dma-buf heaps?
	Slide 6: Downstream Qualcomm Secure DMABUF Heaps
	Slide 7: Vendor DMABUF Heaps
	Slide 8: Generic restricted heaps – Proposal under discussion
	Slide 9: Multiplexing heap names
	Slide 10: QCOM secure video playback – building block

	Thank you
	Slide 11

