
1

Khasim Syed Mohammed
khasim@ti.com

Engineering Lead – Texas Instruments

20 Sept 2024

Productizing the Linux boot time tweaks and
tricks – an engineering problem !

Scope

2

Boot time plays an important role in defining the user experience of a product, the

more time it takes in getting the device into action - the quicker it is pulled out of the

stands.

Linux & it’s stacks can be tweaked to boot as quickly as possible but the challenge

is beyond just optimizing the time or path it takes :–

• it gets into defining the use cases to go after

• productizing these features

• deploying in test farms

• delivering to customers.

Boot != hitting kernel prompt

Problem 1 : Identifying those minimum & complicated Fixed Functions

3

• They impact boot time of Linux and boot loaders

• Very closely tied to hardware : clock, CPU speed, bus width, mechanism

supported in hardware IPs (DMA/Authentication schemes, etc).

• Its mainly SOC architecture, platform owner responsibility – than open source

community.

• Flash

• QSPI or OSPI

• NOR or NAND

• eMMC

CPU fetch

• MCU or MPU

DMA fetch

Security engine

• Decrypt, authenticate DDR

Assuming DDR got

initialized by SPL in

a optimized way

Problem 2 : Tweaking the flow for individual Early Use Cases

4

• SPL DDR init U-Boot

• Initialize CODEC, clock, I2S interfaces

• Play a pre-flashed tone as early Chime

Kernel

• Take over Audio interface, re-

initialize hardware, support Linux

audio frameworks and apps. Early Audio

• SPL DDR init

U-Boot

• Initialize Display, panel, clock,

• Render a pre-flashed image

Kernel

• Take over Display interface, re-

initialize hardware, support Linux

display frameworks and apps. Early Display

Challenges here :

• Need a standard mechanism to notify to Linux kernel that peripheral got initialized already.

• Display : supports it through simple-framebuffer DT node.

• Connectivity : No similar mechanism for Ethernet, USB, CAN – today Links go down and

come back when kernel comes up due to re-initialization.

• Audio : strange problem, it finishes playing the tone and then boots kernel – impacts

kernel boot time or introduces glitches.

Problem 3 : Combo use cases

5

Early

Kernel

• Take over interface, re-initialize hardware,

support over Linux frameworks and apps.

Challenges here :

• Need a standard mechanism to notify to Linux kernel that multiple peripherals got

initialized already.

• Peripherals get enabled sequentially, which one goes first and second need to be

prioritized as per product needs.

• Boot loaders are not multi-threaded at least U-Boot ?

+ Display Audio+
U-Boot

Early + Camera Connectivity+
U-Boot

Early + Display Connectivity+
U-Boot

https://lists.denx.de/pipermail/u-boot/2011-May/092772.html

Problem 4 : MCU core accelerated with Linux Late attach

6

Kernel

• Take over interface, re-initialize hardware,

support over Linux frameworks and apps.

• MCU core might take control back if Linux

crashes

Challenges here :

• Need a standard mechanism to notify to Linux kernel that peripheral got initialized already

by a remote core.

• Safety and time critical applications go first on MCU core and leverage A-core running

Linux for high end processing.

Display
MCU Core

Display + Audio Connectivity+
MCU Core

Problem 5 : Packaging and Delivery of Optimizations and Customizations

7

Challenges here :

• Industry has resolved most of the issues in a hacked and customized way.

• How and where do we document these customizations for community to leverage the

learnings and findings.

• TI does it in SDK distributed through ti.com

• User space customization can be hosted as a separate OE Config or file system “wic”

image with each customization – Yocto way.

• How to host for other distributions like Debian, Buildroot.

• Rebasing with every kernel RC is painful if patches don’t go upstream.

• Any suggestions on where to host such custom kernel configs for community to

collaborate ?

• We are on github if that is helpful ?

• Test automation – there are no boot time specific automated testing like RT-tests, etc. that

gets tested in a automated environment for kernel RCs.

Key care about : How do we let community know about such things and Collaborate ?

Credits

Thanks to the following team members for helping in populating this info :

• Aashvij Shenai <a-shenai@ti.com>

• Devarsh Thakkar <devarsht@ti.com>

• Siddharth Vadapalli <s-vadapalli@ti.com>

Community Partners

mailto:devarsht@ti.com

