
1

Boot time testing
with ftrace

Laura Nao, Collabora Ltd

LPC 2024

2

Motivation
● Automatic detection of boot slowdowns

– No kselftest available upstream

– Utils available in tools/ and scripts/ for manual inspection

– Challenging to run in CI/non-interactive environments

3

Available Tools Upstream
● scripts/bootgraph.pl

– Converts dmesg output into an SVG showing function timing

– Requires CONFIG_PRINTK_TIME=y and initcall_debug option

● tools/power/pm-graph/bootgraph.py
– Generates an HTML kernel boot timeline up to init

– Reads dmesg output, requires initcall_debug option

– Supports ftrace w/ function_graph tracer and pre-defined configuration

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/scripts/bootgraph.pl?h=v6.11-rc6
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/tools/power/pm-graph/bootgraph.py?h=v6.11-rc6

4

Boot Events
● Tracking time for key boot events/functions

– Kernel log

– ftrace

● Identify critical events/functions to trace
– All initcalls

– Subset of specific (critical) events
● See upcoming presentation on boot phases:

Initiatives in boot time reduction - boot time markers, boot phases and profile-guided optimizations @ LPC20

24

https://lpc.events/event/18/contributions/1698/
https://lpc.events/event/18/contributions/1698/

5

Automated Boot Time Test
● Goal

– Detect regressions in the boot time

● Requirements
– Upstream test

● Limited to the pre-init phase

– Minimal dependencies and maintenance

– Generic and CI-compatible

6

Automated Boot Time Test
● Test elements

– Way to trace key boot events

● Kernel log, ftrace

– Parser to extract the timestamps

– Slowdown detection mechanism

● Reference values from previous known good boot

● Variance allowed in start/end time or duration (universal or per-event)

7

Automated Boot Time Test
● Proposed Kselftest

– [RFC PATCH 0/1] Add kselftest to detect boot event slowdowns

● Approach
– Configure ftrace to track timings for specific boot events

– Compare their timestamps against reference values provided in YAML

format

– Flag any deviation beyond a specified delta

https://lore.kernel.org/all/20240725110622.96301-1-laura.nao@collabora.com/T/#ma568382acdc81af65c30fe3823a7be3e49f98108

9

Automated Boot Time Test
● tools/testing/selftests/boot-time/bootconfig: configures ftrace and lists key boot events

– Highly flexible, avoids editing the cmdline manually for the test

– See also: https://www.kernel.org/doc/html/latest/trace/boottime-trace.html

ftrace {
 event.kprobes {
 populate_rootfs_begin.probes = "populate_rootfs"
 unpack_to_rootfs_begin.probes = "unpack_to_rootfs"
 run_init_process_begin.probes = "run_init_process"
 run_init_process_end.probes = "run_init_process%return"
 }
}

https://www.kernel.org/doc/html/latest/trace/boottime-trace.html

10

Automated Boot Time Test
● tools/testing/selftests/boot-time/config: enables boot time tracing and attaches the bootconfig

file to the kernel

– See also: https://www.kernel.org/doc/html/latest/trace/boottime-trace.html

CONFIG_TRACING=y
CONFIG_BOOTTIME_TRACING=y
CONFIG_BOOT_CONFIG_EMBED=y
CONFIG_BOOT_CONFIG_EMBED_FILE="tools/testing/selftests/boot-time/bootconfig"

https://www.kernel.org/doc/html/latest/trace/boottime-trace.html

11

Automated Boot Time Test
● tools/testing/selftests/boot-time/kprobe_timestamps_to_yaml.py: extracts event names and

timestamps from the trace and writes them to a YAML file (run once on a known good kernel)

$./kprobe_timestamps_to_yaml.py kprobe-timestamps.yaml
debugfs is already mounted at /sys/kernel/debug
Generated kprobe-timestamps.yaml

$ cat kprobe-timestamps.yaml
populate_rootfs_begin: 0.438616
run_init_process_begin: 7.549203
run_init_process_end: 7.553013
unpack_to_rootfs_begin: 0.438799

12

Automated Boot Time Test
● tools/testing/selftests/boot-time/test_boot_time.py: compares current trace timestamps

against YAML reference, reports any deviation beyond a specified delta

$./tools/testing/selftests/boot-time/kprobe_timestamps_to_yaml.py kprobe-timestamps.yaml 1
debugfs is already mounted at /sys/kernel/debug
TAP version 13
1..4
ok 1 populate_rootfs_begin
ok 2 run_init_process_begin
ok 3 run_init_process_end
ok 4 unpack_to_rootfs_begin
Totals: pass:4 fail:0 xfail:0 xpass:0 skip:0 error:0

13

Automated Boot Time Test
● tools/testing/selftests/boot-time/test_boot_time.py: compares current trace timestamps

against YAML reference, reports any deviation beyond a specified delta

$./tools/testing/selftests/boot-time/kprobe_timestamps_to_yaml.py kprobe-timestamps.yaml 1
debugfs is already mounted at /sys/kernel/debug
TAP version 13
1..4
ok 1 populate_rootfs_begin
'run_init_process_begin' differs by 2.705185 seconds.
not ok 2 run_init_process_begin
'run_init_process_end' differs by 2.705190 seconds.
not ok 3 run_init_process_end
ok 4 unpack_to_rootfs_begin
Totals: pass:2 fail:2 xfail:0 xpass:0 skip:0 error:0

14

Feedback Received
● Reuse available tools, e.g. tools/power/pm-graph/bootgraph.py

– Need to add machine-readable output (e.g. JSON, YAML)

– Timestamp parser might need some adjustments, depending on the events being

traced (e.g. kprobes)

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/tools/power/pm-graph/bootgraph.py?h=v6.11-rc6

15

Help Needed
● Identify key boot events/functions to trace

– How would you define boot based on your use cases? Should we track subset of critical events or all initcalls?“ ”
● Determines ftrace config and amount of test output

● Results format
– Tracking initcalls => great amount of PASS/FAIL/SKIP statuses. Show failures only?

● Thoughts on reusing bootgraph.py
– Need to change output format and adjust parser

● Determine location/format for reference values file (out-of-tree)
– Other tests need reference values (e.g. devices/probe, devices/exist)

● Towards common mainline device testing @ LPC2024
● Adding benchmark results support to KTAP/kselftest @ LPC2024

● Variance between subsequent runs
– Per event or universal?

● Focus on duration or start/end times?
– Using start/end times might cause cascade of errors
– Using duration => more tracepoints

https://lpc.events/event/18/contributions/1794/
https://lpc.events/event/18/contributions/1791/

16

Thank you!

17

We are hiring
col.la/careers

http://col.la/careers

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

