
https://www.pengutronix.de

Linux-CAN Subsystem BoF
State of the Union and Outlook

Marc Kleine-Budde – mkl@pengutronix.de
Oleksij Rempel – ore@pengutronix.de

mailto:ore@pengutronix.de

 2/17

CAN – the basics

 broadcast bus
 no flow control
 small frames

 CAN-CC: 11/29 bit address, 0...8 bytes data
 CAN-FD: 11/29 bit address, 0...64 bytes data
 CAN-XL: more elaborated addressing,

0...2048 bytes data (HW not yet available)

 3/17

RX-Path – the usual approach (without DMA)

 IP core
 receive packet, generate IRQ

 IRQ handler
 mask RX-IRQ
 schedule NAPI

 NAPI (soft-IRQ or kernel thread)
 allocate skb
 copy data from IP core to skb
 push skb to networking stack → netif_receive_skb()

 4/17

RX-Path – the problem with CAN

 IP cores usually don't support DMA
 limited amount of internal buffers (32 frames)
 high number of CAN frames/s, up to 10k/s
 too high latency between IRQ handler and NAPI

causes packet loss

 5/17

RX-Path – the good old days before NAPI?

 IRQ handler
 allocate skb
 copy data from IP core to skb
 push skb to networking stack → netif_rx()
 netif_rx()

 works from IRQ
 netif_receive_skb() doesn't
 prone to Out-of-Order reception – bad for CAN

 6/17

RX-Path – solution: rx-offload - IRQ

 IRQ handler
 allocate skb
 copy data from IP core to skb
 add skb to rx-offload queue:

can_rx_offload_queue_tail(),
can_rx_offload_queue_timestamp()

 trigger rx-offload-NAPI:
can_rx_offload_irq_finish(),
can_rx_offload_threaded_irq_finish()

 7/17

RX-Path – solution: rx-offload - NAPI

 NAPI
 iterate over queue
 push skb to networking stack → netif_receive_skb()

 8/17

RX/TX timestamping

 convert from controller's internal clock to kernel's representation (in
nanoseconds)

 don't re-invent the wheel, use cyclecounter/timecounter

 struct cyclecounter {

u64 (*read)(const struct cyclecounter *cc);

u64 mask;

u32 mult;

u32 shift;

};

// ns = ((read() & mask) * mult) >> shift;

 struct timecounter tc;

 9/17

What is J1939, and why is it important?

 SAE J1939 is a vehicle bus standard. (Similar to TCP/IP in networking, it
manages communication between vehicle components.)

 Provides standardized communication and diagnostic functionalities,
allowing integration of components from different vendors.

 Widely adopted in automotive, agricultural, and marine industries.

 Provides transport protocols for larger payloads
(like TCP for data transmission).

 Includes address claiming mechanisms
(similar to DHCP in networking).

 Defines application-specific standards for various use cases
(comparable to application layer protocols like HTTP or FTP).

 10/17

J1939 stack in the wild

 11/17

Fun and experimental projects

Connecting Euro Truck Simulator 2 to a real MAN TGX
instrument cluster by using J1939 kernel stack

 12/17

Open-source tools in can-utils

 j19393acd: Address Claim daemon (similar to DHCP).
 j1939cat: Streams data over CAN using the J1939 transport

protocol.
 j1939spy: Monitors CAN bus traffic.
 j1939sr: Simple send/receive utility.
 isobusfs: Implements ISO 11783 file server/client.

(Similar to FTP)
 j1939-timedate: Requests and syncs time/date over CAN.

(Similar to one shot NTP)

 13/17

Ongoing work - J1939 vehicle position service

 GPS
receiver

GPSD GPSD
GPSD
 to
J1939

J1939
 to
GPSD

CAN
bus

App App

J1939 vehicle position service TODO

 14/17

Ongoing work - J1939 vehicle position service

 15/17

Validation and Testing

 Proprietary Tools:
 Used by vendors for field validation of J1939 applications.
 Ensures reliability in real-world environments.

 Open-Source Testing:
 Custom scripts in the can-tests repository created to reproduce and fix

bugs.
 Tests validate the stack using tools like j1939cat and j19393acd.

 Community Feedback:
 Contributions from companies like Huawei and Protonic (Protocol-specific

validation), Google (syzkaller) helped to improve the stack.

 16/17

Community Involvement

 Building a Community:
 Encourage hackers and developers to explore and contribute to the J1939

stack.
 Examples include Raspberry Pi projects and DIY applications using the stack.

 Vendor Sponsorship:
 Potential for vendors to sponsor further development and upstream work.
 Sponsorship can drive new features and enhancements.

 Get Involved:
 Contribute code, report issues, or suggest features via the can-utils GitHub

repository.
 Collaboration opportunities for both hobbyists and industry professionals.

 17/17

Related repositories

 Linux kernel
 https://www.kernel.org/

 CAN utils
 https://github.com/linux-can/can-utils

 CAN tests
 https://github.com/linux-can/can-tests

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

