Linux-CAN Subsystem BoF
State of the Union and Outlook

Marc Kleine-Budde — mkl@pengutronix.de
Oleksij Rempel — ore@pengutronix.de

rPe\ngutromx
! https://www.pengutronix.de

mailto:ore@pengutronix.de

CAN - the basics

= proadcast bus
 no flow control

= small frames
= CAN-CC: 11/29 bit address, 0...8 bytes data

= CAN-FD: 11/29 bit address, 0...64 bytes data

= CAN-XL: more elaborated addressing,
0...2048 bytes data (HW not yet available)

FZ/’W

RX-Path — the usual approach (without DMA)

* |P core

receive packet, generate IRQ

= |RQ handler
mask RX-IRQ
schedule NAPI

= NAPI (soft-IRQ or kernel thread)
allocate skb
copy data from IP core to skb

push skb to networking stack = netif_receive_skb() ﬁ
3/17

RX-Path — the problem with CAN

IP cores usually don't support DMA

limited amount of internal buffers (32 frames)

high number of CAN frames/s, up to 10k/s

too high latency between IRQ handler and NAPI
causes packet loss

ﬁ4/’|7

RX-Path — the good old days before NAPI?

= |RQ handler

= allocate skb

= copy data from IP core to skb

* push skb to networking stack » netif_rx()
* netif_rx()

= works from IRQ

* netif_receive_skb() doesn't
= prone to Out-of-Order reception - bad for CAN

ﬁS/’W

RX-Path — solution: rx-offload - IRQ

= |RQ handler

= allocate skb
= copy data from IP core to skb

= add skb to rx-offload queue:
can_rx_offload_queue_tail(),
can_rx_offload_queue_timestamp()

= trigger rx-offload-NAPI:
can_rx_offload_irq_finish(),
can_rx_offload_threaded_irq_finish()

F6/’I7

RX-Path — solution: rx-offload - NAPI

" NAPI

= iterate over queue

= push skb to networking stack » netif_receive_skb()

ﬂb7/17

RX/TX timestamping

= convert from controller's internal clock to kernel's representation (in
nanoseconds)

= don'tre-invent the wheel, use cyclecounter/timecounter

= struct cyclecounter {

ué4 (*read) (const struct cyclecounter *cc);
ub4 mask;
u32 mult;
u32 shift;

};
// ns = ((read() & mask) * mult) >> shift;

= struct timecounter tc; ﬁ
8/17

What 1s J1939, and why 1s 1t important?

= SAE 1939 is a vehicle bus standard. (Similar to TCP/IP in networking, it
manages communication between vehicle components.)

= Provides standardized communication and diagnostic functionalities,
allowing integration of components from different vendors.

= Widely adopted in automotive, agricultural, and marine industries.

= Provides transport protocols for larger payloads
(like TCP for data transmission).

= Includes address claiming mechanisms
(similar to DHCP in networking).

= Defines application-specific standards for various use cases
(comparable to application layer protocols like HTTP or FTP). ﬁ
9/17

J1939 stack in the wild

10/17

Fun and experimental projects

Connecting Euro Truck Simulator 2 to a real MAN TGX
instrument cluster by using J1939 kernel stack ﬂiw

Open-source tools 1n can-utils

j19393acd: Address Claim daemon (similar to DHCP).

j1939cat: Streams data over CAN using the J1939 transport
protocol.

j1939spy: Monitors CAN bus traffic.

j1939sr: Simple send/receive utility.

isobusfs: Implements ISO 11783 file server/client.
(Similar to FTP)

j1939-timedate: Requests and syncs time/date over CAN.
(Similar to one shot NTP) ﬁ
12/17

Ongoing work - J1939 vehicle position service

GPS
receiver App App
| CAN \
GPSD bus J1939
GPSD - to to — GPSD
J1939 GPSD
J1939 vehicle position service TODO

FIB/’W

Ongoing work - J1939 vehicle position service

Seen 26/Used 157
Time: 2024-07-27T715:00:59.000Z (18) | |GNSS PRN Azim SNR Use
Latitude: 51.88891970 N GP . 1ALz 16.0 Y
Longitude: 10.06607080 E GP - Sl 27

Alt (HAE, MSL): 678.898, 526.601 ft GP . 2298 28.
Speed: 0.01 mph GP .0 173.0 27.
Track (true, var): 203 3.1 deg [|GP 9 . 60. 32.
Climb: 0.59 ft/min GP 11 .0 296.0 40.
Status: 3D FIX (11 secs) GP 20 . 301. 42.

-GP 26 : 8538 37

[cNoNcNoNoNoRoNo)

(170.851699) vcan® 18FEF340 BB 13 9C A9
(005.005778) vcan® 18FEF340 BB 13 SEWAS
(005.005617) vcan® 18FEF340 co 13 9C A8
(005.005793) vcan® 18FEF340 co 13 9C A8
(005.005495) vcan® 18FEF340 C6 13 9C A8
(005.005875) vcan@ 18FEF340 Ce 13 9C A8
(005.005508) vcanO® 18FEF340 CB 13 9C A6
(005.002889) vcan® 18FEF340 CB 13 9C A6
LaTitudge: 51.888Y158, LONgltude: J.Uobub48
Latitude: 51.8889163, Longitude: .0660646
Latitude: 51.8889163, Longitude: .0660646
Latitude: 51.8889163, Longitude: .0660646
Latitude: 51.8889163, Longitude: .0660646
Latitude: 51.8889163, Longitude: 10.0660646
Latitude: 51.8889163, Longitude: .0660646

Validation and Testing

" Proprietary Tools:
" Used by vendors for field validation of J1939 applications.
" Ensures reliability in real-world environments.

" Open-Source Testing:

" Custom scripts in the can-tests repository created to reproduce and fix
bugs.

" Tests validate the stack using tools like j1939cat and j19393acd.
" Community Feedback:

" Contributions from companies like Huawei and Protonic (Protocol-specific
validation), Google (syzkaller) helped to improve the stack.
ﬁ5/17

Community Involvement

Building a Community:

Encourage hackers and developers to explore and contribute to the J1939
stack.

Examples include Raspberry Pi projects and DIY applications using the stack.

Vendor Sponsorship:
" Potential for vendors to sponsor further development and upstream work.
Sponsorship can drive new features and enhancements.

Get Involved:

Contribute code, report issues, or suggest features via the can-utils GitHub
repository.

Collaboration opportunities for both hobbyists and industry professionals.

ﬁ6/17

Related repositories

* |Linux kernel

= https://www.kernel.org/

= CAN utils

https://github.com/linux-can/can-utils

= CAN tests

= https://github.com/linux-can/can-tests

ﬁww

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

