
https://www.pengutronix.de

Linux-CAN Subsystem BoF
State of the Union and Outlook

Marc Kleine-Budde – mkl@pengutronix.de
Oleksij Rempel – ore@pengutronix.de

mailto:ore@pengutronix.de

 2/17

CAN – the basics

 broadcast bus
 no flow control
 small frames

 CAN-CC: 11/29 bit address, 0...8 bytes data
 CAN-FD: 11/29 bit address, 0...64 bytes data
 CAN-XL: more elaborated addressing,

0...2048 bytes data (HW not yet available)

 3/17

RX-Path – the usual approach (without DMA)

 IP core
 receive packet, generate IRQ

 IRQ handler
 mask RX-IRQ
 schedule NAPI

 NAPI (soft-IRQ or kernel thread)
 allocate skb
 copy data from IP core to skb
 push skb to networking stack → netif_receive_skb()

 4/17

RX-Path – the problem with CAN

 IP cores usually don't support DMA
 limited amount of internal buffers (32 frames)
 high number of CAN frames/s, up to 10k/s
 too high latency between IRQ handler and NAPI

causes packet loss

 5/17

RX-Path – the good old days before NAPI?

 IRQ handler
 allocate skb
 copy data from IP core to skb
 push skb to networking stack → netif_rx()
 netif_rx()

 works from IRQ
 netif_receive_skb() doesn't
 prone to Out-of-Order reception – bad for CAN

 6/17

RX-Path – solution: rx-offload - IRQ

 IRQ handler
 allocate skb
 copy data from IP core to skb
 add skb to rx-offload queue:

can_rx_offload_queue_tail(),
can_rx_offload_queue_timestamp()

 trigger rx-offload-NAPI:
can_rx_offload_irq_finish(),
can_rx_offload_threaded_irq_finish()

 7/17

RX-Path – solution: rx-offload - NAPI

 NAPI
 iterate over queue
 push skb to networking stack → netif_receive_skb()

 8/17

RX/TX timestamping

 convert from controller's internal clock to kernel's representation (in
nanoseconds)

 don't re-invent the wheel, use cyclecounter/timecounter

 struct cyclecounter {

u64 (*read)(const struct cyclecounter *cc);

u64 mask;

u32 mult;

u32 shift;

};

// ns = ((read() & mask) * mult) /> shift;

 struct timecounter tc;

 9/17

What is J1939, and why is it important?

 SAE J1939 is a vehicle bus standard. (Similar to TCP/IP in networking, it
manages communication between vehicle components.)

 Provides standardized communication and diagnostic functionalities,
allowing integration of components from different vendors.

 Widely adopted in automotive, agricultural, and marine industries.

 Provides transport protocols for larger payloads
(like TCP for data transmission).

 Includes address claiming mechanisms
(similar to DHCP in networking).

 Defines application-specific standards for various use cases
(comparable to application layer protocols like HTTP or FTP).

 10/17

J1939 stack in the wild

 11/17

Fun and experimental projects

Connecting Euro Truck Simulator 2 to a real MAN TGX
instrument cluster by using J1939 kernel stack

 12/17

Open-source tools in can-utils

 j19393acd: Address Claim daemon (similar to DHCP).
 j1939cat: Streams data over CAN using the J1939 transport

protocol.
 j1939spy: Monitors CAN bus traffic.
 j1939sr: Simple send/receive utility.
 isobusfs: Implements ISO 11783 file server/client.

(Similar to FTP)
 j1939-timedate: Requests and syncs time/date over CAN.

(Similar to one shot NTP)

 13/17

Ongoing work - J1939 vehicle position service

 GPS
receiver

GPSD GPSD
GPSD
 to
J1939

J1939
 to
GPSD

CAN
bus

App App

J1939 vehicle position service TODO

 14/17

Ongoing work - J1939 vehicle position service

 15/17

Validation and Testing

 Proprietary Tools:
 Used by vendors for field validation of J1939 applications.
 Ensures reliability in real-world environments.

 Open-Source Testing:
 Custom scripts in the can-tests repository created to reproduce and fix

bugs.
 Tests validate the stack using tools like j1939cat and j19393acd.

 Community Feedback:
 Contributions from companies like Huawei and Protonic (Protocol-specific

validation), Google (syzkaller) helped to improve the stack.

 16/17

Community Involvement

 Building a Community:
 Encourage hackers and developers to explore and contribute to the J1939

stack.
 Examples include Raspberry Pi projects and DIY applications using the stack.

 Vendor Sponsorship:
 Potential for vendors to sponsor further development and upstream work.
 Sponsorship can drive new features and enhancements.

 Get Involved:
 Contribute code, report issues, or suggest features via the can-utils GitHub

repository.
 Collaboration opportunities for both hobbyists and industry professionals.

 17/17

Related repositories

 Linux kernel
 https://www.kernel.org/

 CAN utils
 https://github.com/linux-can/can-utils

 CAN tests
 https://github.com/linux-can/can-tests

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

