
1

A case for a generic Linux Driver for 
connecting MCUs to MPUs

Andrew Davis
afd@ti.com

Schuyler Patton
spatton@ti.com

20 Sept 2024



About Us

• Andrew Davis

– Open Source Product Technology team

– Software and hardware architecture

– New enabling technologies

– Ease of use, open standards, open 

source ecosystems, and community 

engagement

• Schuyler Patton

– Sitara MPU Systems and Applications team

– Embedded Linux applications on Sitara 

devices

– Plugging in Sitara MPU processors into 

other processors, peripherals 

– Networking support

2



MPU + MCU attach for IOT applications
MPU = Micro-Processor Unit  MCU = Micro-Controller Unit

• Connecting the two processor types is 

not a new concept for IOT applications

• Various applications from existing 

applications to upgrading system 

concepts, offloading etc.

• Getting a MPU/MCU application 

integrated faster is always a desire.

3



MPU + MCU – Defining the two processor types

4

• MCU – Micro-Controller Unit

– Applications are very limited memory size 

for code and data

– Slower speed processor

• MPU – Micro-Processor Unit

– Running a OS like Linux

– Has DDR

– Applications not restricted on memory 

size

– Lots of storage

– Higher speed processors

32-MHz Arm® 

Cortex®-M0+ MCU

32bit

64-KB flash, 

4-KB SRAM

1400 GHz Arm® 

Cortex ®-A53 – multi-core

64-bit

Up to 8GBytes with DDR4



MPU + MCU attach – Application examples/reasons

• EV Charging offload  

– PWM

– ADC

– LIN 

• Touchscreen controller

• Wireless protocols (Sub 1GHz)

• Low Latency apps

• Peripheral mis-match

• Extension of peripherals on not 

available MPU processor

5

MCU

ADC

MPU

PWM

LIN

Controller Peripheral

MCU App that is front-end for an MPU app



MPU + MCU attach – Connecting the two processors
(Hardware)

6

MCUMPU

• Selecting available interfaces

• MPU – Controller, MCU - Peripheral

– CAN   

– I2C

– SPI

– UART

??



MPU + MCU attach – Connecting the two processors
(Software)

7

MCUMPU

• MPU – Controller,  

– CAN  (network – can0) 

– I2C ( /dev/i2c) 

– SPI ( /dev/spidev1.0)

– UART (/dev/ttyS3)

??

• MCU - Peripheral

– Application using MCU SDK 

Framework and Driver lib 

support

• CAN   

• I2C

• SPI

• UART



MPU + MCU attach – Connecting the two processors
(Software)

8

MCUMPU

• MPU – Controller  

– CAN  (network – can0) 

– I2C ( /dev/i2c) 

– SPI ( /dev/spidev1.0)

– UART (/dev/ttyS3)

??

• MCU - Peripheral

– Application using MCU SDK 

Framework and Driver lib 

support

• CAN   

• I2C

• SPI

• UART

Lots of options, could one 

interface abstraction be 

used?



MPU + MCU attach – A method for quick access

• What we want:

– Somewhat quick (and lazy) way to 

quickly to get information from the 

MCU to a Linux application

– Could using the tty interface as a quick 

very common interface that abstracts 

the actual connecting interface

– Can be accessed without having to an 

application for a quick test

9

stty -F /dev/ttyS3 115200  

cat /dev/ttyS3



MPU + MCU attach – A method for quick access

• What we want:

– Somewhat quick (and lazy) way to 

quickly to get information from the 

MCU to a Linux application

– Could using the tty interface as a quick 

very common interface that abstracts 

the actual connecting interface

– Can be accessed without having to an 

application for a quick test

– Relieves Linux application developers 

of requiring a dedicated driver for the 

interconnection.

10

stty -F /dev/ttyS3 115200  

cat /dev/ttyS3



Why UART?

• UART interface for applications is the probably the simplest common 

communication interface.

• UART examples are plentiful on the web

• Data can be human readable if needed

• Lots of existing tooling for quick testing and control (cat, stty, etc..)

11



Need to read a peripheral…

12

Some Char based peripheral

main () {

char read_buf[RBUF_SIZE]; 

int  read_cnt = 0;

int  err_flag;

fd = open("/dev/ttyVU0",O_RDONLY | O_NOCTTY| O_SYNC);

while (1) {

rd_cnt = read(fd,&read_buf,RBUF_SIZE);

if (rd_cnt > 0)

do_the_thing_that_needs_doing();

sleep(an_amount_of_time);

}

user_application.c

user space kernel space



Some current connected MCU solutions

13

USB->UART Driver

Kernel to 

userspace

UART-USB

ADC

MCU

UART

SoC boundary

Sensor

/dev/ttyACM0

Arduino Style

user application

/dev/ttyRPMSG0

PRMSG->UART Driver  

(rpmsg_tty.c)

SoC Internal MCU

ADC

RPMSG

Virtio/Mailbox

UART Driver

/dev/ttyS0

MCU

ADC

UART

SoC internal MCU

SensorSensor

USB Controller
UART Controller

Direct UART



Why UART abstraction for SPI, I2C Use Cases

• Hardware protocol converters like USB<->UART add board cost

• Might want chip select like SPI

• Might want to daisy-chain like I2C

• Still want to keep the same application code (UART based)

– UART works fine for simple data

– Don’t want to re-write our all our tools/apps to use spidev or special I2C ioctls

• What do we do?:

– Connect to the MCU with SPI/I2C physically but with UART interface to 

software

14



UART over SPI/I2C connected MCU

15

user application

user space

kernel space

/dev/ttyVU0

I2C/SPI->UART 

Driver

MCU MSPM0

ADC

SPI/I2C

This is what we 

are proposing

user application

/dev/pts/0

I2C/SPI 

Driver

MCU MSPM0

ADC

SPI/I2C

SPIDEV to PTY 

Application

I2C/SPI 

Driver

This is what 

we have 

been using

SPIDEV Driver



Userspace vs Kernel driver

• Userspace would need new interrupt support

– Do not want to continuously poll device

– Extend SPIDEV to support IRQs?

– Could the current SPIDEV and I2C userspace interface be more network like (CAN)?

• Might allow more standard addressing (CS / I2C address -> AF_SPI)

• recv() to block for next message vs polling

• Kernel driver needs common encapsulation wire format over SPI/I2C

– Control signals? RTS/CTS or XON/XOFF

– Translate to I2C clock stretching?

– How do we describe the MCU with DTS?

16



Summary 

• Connecting the two processor types is not a new concept for IOT applications

• Want to provide a  way to connect an MCU and MPU

• Want to use same Linux application code through a UART abstraction that 

allows different common peripheral interfaces as the interconnect

• Do we want a kernel level driver to make this UART abstraction standard?

17


