

PCIe PortDrv - Finding a Path
Forwards?

Jonathan Cameron
Too many slides (sorry), but lots of questions!

Aim of today:
Make progress towards choosing a direction!

Motivation:
Support CXL Performance Monitoring Units on switch ports.

Thanks to all who have been involved in discussion so far: particularly Thomas Gleixner.

3

Background: What is drivers/pci/pcie/portdrv.c ?

• drivers/pci/pcie/*

• PCI Driver binding to PCI_CLASS_BRIDGE_PCI_* / PCI_CLASS_SYSTEM_RCEC

• PCIe Root ports, Switch Ports and Root Complex Event Collectors.

• Supports PCIe Spec defined features as subdrivers* on /sys/bus/pci_express

• AER, DPC, PME, Bandwidth Notifier, Hot Plug.

• Discovery features, including interrupt vectors.

4

Why do we need to do anything?

• Rigid infrastructure - proving hard to extend
• Complex - perhaps more than needed:

• Feature discovery complexity.
• Interrupts discovery complexity.
• Looks adaptable but isn’t: Built in only, no subdriver unbind etc.

• Layering is messy: e.g.
• AER driver provides attribute implementations used directly in drivers/pci/pci-sysfs.h
• Interrupts - see later.

Possible conclusion: Maybe we don’t need to do anything?

5

The interrupt issue

• For MSI (and MSI-X*)
pci_alloc_irq_vectors() called just
‘once’

• Max useful vector must be known.
• Parent driver (portdrv) needs to know

how to find that vector.
• Hence portdrv contains interrupt

vector / msgnum discovery (as well
feature discovery)

 (* we’ll come back to that.)

Port Driver Probe
Set Vectors to max supported.

For each feature:
Discover if feature present
Discover MSI/X msgnum

Set vectors to max seen:

For each feature present
Discover new MSI/X msgnum
Register Device

• Existing features: interrupt discovery

is config space.

• Target features: much more complex

(config space to find BAR address to

check etc)
6

Why have sub-drivers + pci_express bus for standard features?

• They aren’t really optional (no unbind!)

• Maybe we can avoid this? Options:

1. Move into the PCIe core

2. Make them just function calls

3. Keep the sub-drivers

7

Why moving them into the core isn’t simple.
Aims:
• All the existing functionality in the PCI core
• No class driver!
• Hence for new functionality can bind a device specific driver.

Interrupts tricky - maybe we can have a disable + reenable dance? Races to close but in theory doable.

Snags:
• Kernel MSI/X infrastructure makes heavy use of devres - Device managed resources.
• Lifetime tied to driver binding.
• These can’t be in use when driver binds.
• (In theory could unwind them pre driver bind but that is a mess).
• Unsurprisingly Thomas not keen.
Worth pursuing?

8

So why consider move to library calls?
• Simpler - lifetimes all clear.

• Moves out the way for step 2 - I still want an extensible driver!

• Can’t use next proposal for existing features…

Maybe not a question to answer today…

9

Dynamic MSI-X to the rescue? (maybe)
• Dynamic MSI-X allows allocation of vectors on demand.

• Core driver can allocate interrupts it knows about.

• Subdrivers can allocate the ones they want - which core driver doesn’t know about!

• Layering possible!

Limitations:
• MSI-X only. (currently x86 only but we can fix that)

• MSI-X msgnum sharing won’t currently work with layering.

Advantages
• Clean layering as interrupt discovery belongs in child driver.

• (Pushing industry towards MSI-X)

10

Backup Material.
Stuff we ‘won’t’ reach!

Discovery / Unified vs Device type specific base driver?
• Discovery of extended features in core driver.

• Can we solve that with complex ‘matching scheme’?

• If modular subdrivers how would autoprobing work?

• Match on DVSEC, VSEC + VID, CXL RBL, MMBRL + MCAP (6.2 feature) or

custom?

• If we can’t make generic discovery work: Single driver, or ‘basic’ driver + extended

drivers?

• Basic driver PCIe Spec features only.

• Extended driver: e.g. for CXL switch ports keeps CXL feature discovery out of basic

driver.

•

12

How Dynamic MSI-X would work.
• I have a PoC but it’s still evolving.

• Relies on per device MSI-X domains.
• Portdrv registers a hierarchical MSI-X domain on top of it’s per device domain.

• Many operations proxied to parent irq domain (the portdrv device MSI-X domain)
• Sub drivers can then request an MSI-X vector via pci_subdev_request_msi_at()

A few fiddly corners to resolve.

Thanks to Thomas Gleixner for lots of suggestions on how to make this work cleanly!

13

