
Closing the script execution control gap

Linux Plumbers Conference

Mickaël Salaün

A picture containing text, clipart

Description automatically generated

2024-09-19

https://digikod.net/
https://creativecommons.org/licenses/by-sa/4.0/


Context A secure Linux system on which we should 

know every executable code: trusted 

code

Trust requires integrity: measurement + 

code authentication (e.g., secure boot, 

IMA/EVM, IPE)

Once attackers get a foot on the system, 

we don’t want them to execute their 

code.



What is 

missing?

Linux already has several access control 

systems: DAC, mount points, SELinux, 

Landlock…

We can configure a set of access rights, 

including execution… except for scripts.

Main use case and prerequisite: systems 

with a well-configured and enforced 

access control, including code integrity.



Issue

./script.sh

vs.

sh script.sh



What is 

execution?

Subjective idea:

• Data interpreted by the CPU: code

• Data interpreted by executable code

binfmt_misc can make any “data” 

executable.



Goal Protect the system from untrusted 

instructions that could do malicious things: 

explicitly do syscalls, modify user’s data, 

leak data…

Do not rely on variants of script interpreters 

(hardcoded with or without restriction).

Properly handle stdin, command 

arguments, environment variables…



Legitimate calls Same security restrictions with these 

commands:

• ./script.py

• python script.py

• python < script.py

• python -m script.py



Untrusted calls Too difficult to reliably identify the origin 

of the script with these commands:

• xargs -a script.py -d '\r' -- python –c

• cat script.py | python

• python



Security policy Different use cases:

• Developers or sysadmins may need to 

write and execute their own scripts

• System services may not be required to 

execute scripts

Script control could be only implemented 

by interpreters, but it does not make much 

sense without consistent system policy:

• Define access rights

• Enforce restrictions



Define access 

rights

Let user space check if the kernel’s policy 

would allow execution of a file.

A simple policy can be defined with 

mount point’s noexec

Check is done with a new execveat(2)’s 

flag: AT_CHECK



Enforce 

restrictions

Compatibility challenge: because user 

space is involved, we need a way to 

smoothly migrate (or not) to a more 

tighten access control.

New securebits for enlightened script 

interpreters:

• SECBIT_EXEC_RESTRICT_FILE

• SECBIT_EXEC_DENY_INTERACTIVE (REPL)



Extendable 

security policy

Mount points and process hierarchies 

might not be enough for more complex 

use cases. Leverage LSM security policies 

to get a more fine-grained control over 

restrictions: e.g.,

• Only for a set of users/services

• Always enforce for a set of script 

interpreters…



Consistent 

protection

The execution context (e.g., environment 

variables, command arguments) might be 

malicious, but not the executable files.

libc needs to properly check executable 

libraries e.g., because of LD_PRELOAD or 

LD_LIBRARY_PATH.



Potential 

drawbacks and 

limitations

• execveat(2) accepts both a file descriptor 

(good) or a path (may be bad)

• execveat(2) only handles regular files

• securebits were only used for root-

related restrictions

• Mark all (script) libraries as executable

• Executable scripts need to safely deal 

with untrusted inputs (e.g., dangerous 

“eval” functions)



Previous 

proposals

1. open(2) + O_MAYEXEC, with dedicated 

sysctl. First implemented with Yama, 

then with a dedicated LSM, and finally 

without LSM.

2. faccessat2(2) + AT_INTERPRETED flag

3. New dedicated trusted_for(2)

4. access(2) + OK_EXECVE mode



Current 

approach:

v19+

Two complementary kernel changes:

• execveat(2): check for executability of a 

file according to the kernel (not only 

file permission)

• securebits: configuration flags for user 

space’s interpreters (e.g., containers, 

user sessions, system services)

User space changes:

• Scripts interpreters: Python, Perl, Bash…

• libc

https://lore.kernel.org/all/20240704190137.696169-1-mic@digikod.net/


Next steps New patch series with:

• Simplified implementation

• A toy interpreter to showcase the 

required changes

• Extended tests

Enlighten script interpreters and libc.



References • [RFC PATCH v19 0/5] Script execution 

control (was O_MAYEXEC)

• Restricting execution of scripts — the 

third approach [LWN.net]

• Initial execveat sample - PR #12 - 

zooba/spython

• Windows Defender Application Control - 

script enforcement

• CLIP OS’s O_MAYEXEC patches

https://lore.kernel.org/all/20240704190137.696169-1-mic@digikod.net/
https://lore.kernel.org/all/20240704190137.696169-1-mic@digikod.net/
https://lwn.net/Articles/982085/
https://lwn.net/Articles/982085/
https://github.com/zooba/spython/pull/12
https://learn.microsoft.com/en-us/windows/security/application-security/application-control/windows-defender-application-control/design/script-enforcement
https://learn.microsoft.com/en-us/windows/security/application-security/application-control/windows-defender-application-control/design/script-enforcement
https://github.com/search?q=repo%3Aclipos-archive%2Fclipos4_portage-overlay+O_MAYEXEC&type=code

	Slide 1: Closing the script execution control gap
	Slide 2: Context
	Slide 3: What is missing?
	Slide 4: Issue
	Slide 5: What is execution?
	Slide 6: Goal
	Slide 7: Legitimate calls
	Slide 8: Untrusted calls
	Slide 9: Security policy
	Slide 10: Define access rights
	Slide 11: Enforce restrictions
	Slide 12: Extendable security policy
	Slide 13: Consistent protection
	Slide 14: Potential drawbacks and limitations
	Slide 15: Previous proposals
	Slide 16: Current approach: v19+
	Slide 17: Next steps
	Slide 18: References

