
PID FDs: where we were,
where we are and were we

would like to go
Luca Boccassi, Microsoft, Linux Systems Group

Agenda

● Reminder on why we need PID FDs
● Recap of recent work to plumb PID FDs through the Linux OS low-level stack
● Current work in progress in userspace to expand the above
● What’s left to do and would be good to have as kernel interfaces

Reminder: why do we need PID FDs?

● PIDs can be recycled (CVE-2019-6133, CVE-2019-15790…)
● Cap hit at 2^22 at most, then they wrap around

○ Forking requires no privileges
● Process tracking is not only a parent/children affair, other processes need to

do tracking too
○ Polkit, D-Bus, systemd, …
○ Fragile mechanism + security/authentication = sad faces all around
○ E.g.: polkit uses metadata such as starting time to try and mitigate this fragility, and was only

safe to use to authenticate D-Bus peers

https://bugzilla.redhat.com/show_bug.cgi?id=CVE-2019-6133
https://securitylab.github.com/research/ubuntu-apport-CVE-2019-15790/
https://polkit.pages.freedesktop.org/polkit/
https://www.freedesktop.org/wiki/Software/dbus/
https://systemd.io
https://gitlab.freedesktop.org/polkit/polkit/-/blob/master/src/polkit/polkitunixprocess.c?ref_type=heads#L81

Some Ancient History

● Kernel feature added starting from v5.3: PID File Descriptors
● Valid only until the tracked process has been reaped, never reused
● Can be passed to other processes via SCM_RIGHTS messages (AF_UNIX)
● Not limited to parent/children
● Can be resolved to a PID at any time via /proc/self/fdinfo/<X>, -1 if process is

gone

https://man7.org/linux/man-pages/man2/pidfd_open.2.html
https://man7.org/linux/man-pages/man7/unix.7.html#:~:text=cmsg(3).-,SCM_RIGHTS,-Send%20or%20receive

Some Recent History (1/3)
● Kernel v6.5 adds SCM_PIDFD and SO_PEERPIDFD

○ SCM_PIDFD is equivalent to SCM_CREDENTIALS but with a FD instead of a PID
○ SO_PEERPIDFD is equivalent to SO_PEERCRED but with a FD instead of a PID

● Kernel v6.9 added a new pseudo-filesystem for PID FD nodes in /proc/
○ Can now compare entries directly for equality, use statx()

● Glibc v2.39 added pidfd_spawn() and pidfd_getpid()
○ Equivalent of posix_spawn(), returning FD instead of PID, and shortcut to resolve a PID FD to

a PID
● With these changes merged in and available, we can start building interesting

things in userspace

https://github.com/torvalds/linux/commit/5e2ff6704a275be009be8979af17c52361b79b89
https://man7.org/linux/man-pages/man7/unix.7.html#:~:text=before%20Linux%202.6.38).-,SCM_CREDENTIALS,-Send%20or%20receive
https://github.com/torvalds/linux/commit/7b26952a91cf65ff1cc867a2382a8964d8c0ee7d
https://man7.org/linux/man-pages/man7/unix.7.html#:~:text=socket(7).-,SO_PEERCRED,-This%20read%2Donly
https://sourceware.org/git?p=glibc.git;a=commit;h=0d6f9f626521678f330f8bfee89e1cdb7e2b1062
https://sourceware.org/git?p=glibc.git;a=commit;h=e7190fc73dbc8a1f8f94f8ccacd9a190fa5e609c
https://man7.org/linux/man-pages/man3/posix_spawn.3.html

Some Recent History (2/3)

● systemd v253 adds GetUnitByPIDFD() and sd_pidfd_get*() APIs
○ Query session/unit/cgroup/etc by FD instead of PID
○ PSA: if you use the *_pid_* variants, switch to the *_pidfd_* variants!

● systemd v255 spawns services using pidfd_spawn()
○ With fallback for older kernels/libc
○ Also takes advantage of CLONE_INTO_CGROUP for race-free cgroup assignments

● systemd v256 switched all internal process tracking from PIDs to PID FDs
○ Some hiccups due to kthreads also showing up, but should be all sorted
○ Exception: dealing with cgroups, which do PIDs only

https://www.freedesktop.org/software/systemd/man/org.freedesktop.systemd1.html#:~:text=out%20o%20unit)%3B-,GetUnitByPIDFD,-(in%20%20h%20pidfd
https://www.freedesktop.org/software/systemd/man/sd_pidfd_get_owner_uid.html
https://sourceware.org/git?p=glibc.git;a=commit;h=0d6f9f626521678f330f8bfee89e1cdb7e2b1062

Some Recent History (3/3)

● D-Bus spec, dbus-daemon v1.15.8/v1.16.0 (dev), dbus-broker v34 add
ProcessFD to GetConnectionCredentials()

○ They will return it only if it has been obtained ‘safely’, i.e. via SO_PEERPIDFD
○ PSA: if you use GetConnectionCredentials or GetUnixProcessID, switch to ProcessFD instead

● Polkit v124 uses sd_pidfd* and ProcessFD internally to track processes
○ It is now safe to use to track, authenticate and authorize processes that are not

communicating over D-Bus, for example: Varlink sockets
● Polkit v124 also provides a new ‘system_unit’ subject attribute

○ It will allow writing polkit rules such as ‘if (subject.system_unit == "orchestrator.service")
…’as an alternative to adding fixed uid/gid/user/groups to base authorization on

https://gitlab.freedesktop.org/dbus/dbus/-/merge_requests/420
https://gitlab.freedesktop.org/dbus/dbus/-/merge_requests/398
https://github.com/bus1/dbus-broker/pull/312
https://dbus.freedesktop.org/doc/dbus-specification.html#:~:text=error%20is%20returned.-,org.freedesktop.DBus.GetConnectionCredentials,-As%20a%20method
https://gitlab.freedesktop.org/polkit/polkit/-/merge_requests/174
https://gitlab.freedesktop.org/polkit/polkit/-/merge_requests/154

Work in Progress: remove setuid from Polkit Agent

● Polkit authentication agent running in the unprivileged user session -> spawns
SETUID root helper binary that runs PAM session and authenticates

● SETUID binaries are considered harmful, as the environment is under the
control of the unprivileged caller, so attacks are possible and have happened

● Thanks to PID FDs, we can reliably track processes outside of parent/child
relationship

● Agent talks to a socket-activated service, which takes a PID FD and passes it
to Polkit after authentication, so Polkit can reliably check that it is authorizing
the actual process that was authenticated

● https://github.com/polkit-org/polkit/issues/169

https://github.com/polkit-org/polkit/issues/169

What’s next?

● Migration to using PID FDs slowly in progress in core userspace components
● Some areas left where PID FDs cannot be used, and they have to be

translated back to PIDs, or there is a lack of a programmatic API
● Would be good to provide solutions to fill these gaps
● Most are easy, one seems complex

Wishlist: resolve PID FD to PID

● Currently have to reimplement string parsing of /proc/X/fdinfo/Y
● Requires /proc being mounted, and custom string parsing is not ideal
● Glibc implemented a parser and provides a public API for it, but would be nice

to remove even that
● Can we have a programmatic API instead?

○ New ioctl? E.g.:

#define PIDFD_GET_PID _IOR(PIDFS_IOCTL_MAGIC, 11, int)

ioctl(pidfd, PIDFD_GET_PID, &pid)

Wishlist: querying creds of a PID FD

● Checking creds of a socket peer is easy via SCM_RIGHTS and friends
● But what if I don’t have a socket, I only have a PID FD?
● Have to resolve PID FD to PID, and then check /proc/PID/

○ String parsing, fine for scripts, not ideal elsewhere
○ Subject to usual races due to PID, so have to resolve PID FD, parse /proc/ manually, then

again resolve PID FD to ensure nothing changed
● Can we have a programmatic API to query creds of a PID FD?

○ Avoids need for everyone to roll their own proc parser
○ Avoids need for double and triple checking that there are no races
○ New ioctl? E.g.:

#define PIDFD_GET_CREDS _IOR(PIDFS_IOCTL_MAGIC, 12, struct ucred)

ioctl(pidfd, PIDFD_GET_CREDS, &creds)

Wishlist: <somehow> integrate PID FDs and cgroups

● Cgroups list PIDs, so we have to translate back and forth
● Main usage of PIDs left in systemd
● Can we figure out a way to somehow use PID FDs directly?

○ E.g.: I have a PID FD, what cgroup does it belong to?

#define PIDFD_GET_CGROUPID _IOR(PIDFS_IOCTL_MAGIC, 13, uint64_t)

ioctl(pidfd, PIDFD_GET_CGROUPID, &cgroupid)

○ E.g.: I have a cgroup, can I iterate over all the processes using only FDs? Maybe new PIDFD
filesystem can help, maybe something somewhat similar to /proc/N/fd/ ?

Thanks!

Questions?

