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Agenda

Reminder on why we need PID FDs

Recap of recent work to plumb PID FDs through the Linux OS low-level stack
Current work in progress in userspace to expand the above

What's left to do and would be good to have as kernel interfaces



Reminder: why do we need PID FDs?

e PIDs can be recycled (CVE-2019-6133, CVE-2019-15790...)
e Cap hit at 2*22 at most, then they wrap around

o Forking requires no privileges
e Process tracking is not only a parent/children affair, other processes need to

do tracking too
o Polkit, D-Bus, systemd, ...
o Fragile mechanism + security/authentication = sad faces all around
o E.g.: polkit uses metadata such as starting time to try and mitigate this fragility, and was only
safe to use to authenticate D-Bus peers



https://bugzilla.redhat.com/show_bug.cgi?id=CVE-2019-6133
https://securitylab.github.com/research/ubuntu-apport-CVE-2019-15790/
https://polkit.pages.freedesktop.org/polkit/
https://www.freedesktop.org/wiki/Software/dbus/
https://systemd.io
https://gitlab.freedesktop.org/polkit/polkit/-/blob/master/src/polkit/polkitunixprocess.c?ref_type=heads#L81

Some Ancient History

Kernel feature added starting from v5.3: PID File Descriptors

Valid only until the tracked process has been reaped, never reused

Can be passed to other processes via SCM_RIGHTS messages (AF_UNIX)
Not limited to parent/children

Can be resolved to a PID at any time via /proc/self/fdinfo/<X>, -1 if process is
gone



https://man7.org/linux/man-pages/man2/pidfd_open.2.html
https://man7.org/linux/man-pages/man7/unix.7.html#:~:text=cmsg(3).-,SCM_RIGHTS,-Send%20or%20receive

Some Recent History (1/3)

Kernel v6.5 adds SCM_PIDFD and SO_PEERPIDFD
o SCM_PIDED is equivalent to SCM_CREDENTIALS but with a FD instead of a PID
o SO_PEERPIDED is equivalent to SO_PEERCRED but with a FD instead of a PID
Kernel v6.9 added a new pseudo-filesystem for PID FD nodes in /proc/
o Can now compare entries directly for equality, use statx()
Glibc v2.39 added pidfd_spawn() and pidfd_getpid()
o Equivalent of posix_spawn(), returning FD instead of PID, and shortcut to resolve a PID FD to
a PID
With these changes merged in and available, we can start building interesting

things in userspace



https://github.com/torvalds/linux/commit/5e2ff6704a275be009be8979af17c52361b79b89
https://man7.org/linux/man-pages/man7/unix.7.html#:~:text=before%20Linux%202.6.38).-,SCM_CREDENTIALS,-Send%20or%20receive
https://github.com/torvalds/linux/commit/7b26952a91cf65ff1cc867a2382a8964d8c0ee7d
https://man7.org/linux/man-pages/man7/unix.7.html#:~:text=socket(7).-,SO_PEERCRED,-This%20read%2Donly
https://sourceware.org/git?p=glibc.git;a=commit;h=0d6f9f626521678f330f8bfee89e1cdb7e2b1062
https://sourceware.org/git?p=glibc.git;a=commit;h=e7190fc73dbc8a1f8f94f8ccacd9a190fa5e609c
https://man7.org/linux/man-pages/man3/posix_spawn.3.html

Some Recent History (2/3)

e systemd v253 adds GetUnitByPIDFD() and sd_pidfd_get*() APIs
o Query session/unit/cgroup/etc by FD instead of PID

o PSA: if you use the *_pid_* variants, switch to the *_pidfd_* variants!
e systemd v255 spawns services using pidfd_spawn()
o  With fallback for older kernels/libc
o Also takes advantage of CLONE_INTO_CGROUP for race-free cgroup assignments
e systemd v256 switched all internal process tracking from PIDs to PID FDs

o Some hiccups due to kthreads also showing up, but should be all sorted
o Exception: dealing with cgroups, which do PIDs only



https://www.freedesktop.org/software/systemd/man/org.freedesktop.systemd1.html#:~:text=out%20o%20unit)%3B-,GetUnitByPIDFD,-(in%20%20h%20pidfd
https://www.freedesktop.org/software/systemd/man/sd_pidfd_get_owner_uid.html
https://sourceware.org/git?p=glibc.git;a=commit;h=0d6f9f626521678f330f8bfee89e1cdb7e2b1062

Some Recent History (3/3)

e D-Bus spec, dbus-daemon v1.15.8/v1.16.0 (dev), dbus-broker v34 add

ProcessFD to GetConnectionCredentials()
o They will return it only if it has been obtained ‘safely’, i.e. via SO_PEERPIDFD
o PSA: if you use GetConnectionCredentials or GetUnixProcessID, switch to ProcessFD instead
e Polkit v124 uses sd_pidfd* and ProcessFD internally to track processes
o ltis now safe to use to track, authenticate and authorize processes that are not
communicating over D-Bus, for example: Varlink sockets
e Polkit v124 also provides a new ‘system_unit’ subject attribute

o It will allow writing polkit rules such as ‘if (subject.system_unit == "orchestrator.service")
.."as an alternative to adding fixed uid/gid/user/groups to base authorization on



https://gitlab.freedesktop.org/dbus/dbus/-/merge_requests/420
https://gitlab.freedesktop.org/dbus/dbus/-/merge_requests/398
https://github.com/bus1/dbus-broker/pull/312
https://dbus.freedesktop.org/doc/dbus-specification.html#:~:text=error%20is%20returned.-,org.freedesktop.DBus.GetConnectionCredentials,-As%20a%20method
https://gitlab.freedesktop.org/polkit/polkit/-/merge_requests/174
https://gitlab.freedesktop.org/polkit/polkit/-/merge_requests/154

Work in Progress: remove setuid from Polkit Agent

e Polkit authentication agent running in the unprivileged user session -> spawns
SETUID root helper binary that runs PAM session and authenticates

e SETUID binaries are considered harmful, as the environment is under the
control of the unprivileged caller, so attacks are possible and have happened

e Thanks to PID FDs, we can reliably track processes outside of parent/child
relationship

e Agent talks to a socket-activated service, which takes a PID FD and passes it
to Polkit after authentication, so Polkit can reliably check that it is authorizing
the actual process that was authenticated

e https://github.com/polkit-org/polkit/issues/169



https://github.com/polkit-org/polkit/issues/169

What's next?

e Migration to using PID FDs slowly in progress in core userspace components

e Some areas left where PID FDs cannot be used, and they have to be
translated back to PIDs, or there is a lack of a programmatic API

e \Would be good to provide solutions to fill these gaps

e Most are easy, one seems complex



Wishlist: resolve PID FD to PID

e Currently have to reimplement string parsing of /proc/X/fdinfo/Y

e Requires /proc being mounted, and custom string parsing is not ideal

e Glibc implemented a parser and provides a public API for it, but would be nice
to remove even that

e Can we have a programmatic APl instead?
o Newioctl? E.g.:

#define PIDFD_GET PID _IOR(PIDFS_IOCTL_MAGIC, 11, int)
ioctl(pidfd, PIDFD_GET_PID, &pid)



Wishlist: querying creds of a PID FD

e Checking creds of a socket peer is easy via SCM_RIGHTS and friends
e Butwhat if | don’t have a socket, | only have a PID FD?
e Have to resolve PID FD to PID, and then check /proc/PID/

o  String parsing, fine for scripts, not ideal elsewhere
o Subject to usual races due to PID, so have to resolve PID FD, parse /proc/ manually, then
again resolve PID FD to ensure nothing changed
e Can we have a programmatic APl to query creds of a PID FD?

o Avoids need for everyone to roll their own proc parser
o Avoids need for double and triple checking that there are no races
o New ioctl? E.g.:

#define PIDFD_GET _CREDS _IOR(PIDFS_IOCTL_MAGIC, 12, struct ucred)
ioctl(pidfd, PIDFD_GET_CREDS, &creds)



Wishlist: <somehow> integrate PID FDs and cgroups

e Cgroups list PIDs, so we have to translate back and forth
e Main usage of PIDs left in systemd

e Can we figure out a way to somehow use PID FDs directly?
o E.g.: ' have a PID FD, what cgroup does it belong to?

#define PIDFD_GET _CGROUPID _IOR(PIDFS_IOCTL_MAGIC, 13, uint64 t)
ioctl(pidfd, PIDFD_GET_CGROUPID, &cgroupid)

o E.g.: | have a cgroup, can | iterate over all the processes using only FDs? Maybe new PIDFD
filesystem can help, maybe something somewhat similar to /proc/N/fd/ ?



Thanks!

Questions?



