PID FDs: where we were,
where we are and were we
would like to go

Luca Boccassi, Microsoft, Linux Systems Group

Agenda

Reminder on why we need PID FDs

Recap of recent work to plumb PID FDs through the Linux OS low-level stack
Current work in progress in userspace to expand the above

What's left to do and would be good to have as kernel interfaces

Reminder: why do we need PID FDs?

e PIDs can be recycled (CVE-2019-6133, CVE-2019-15790...)
e Cap hit at 2*22 at most, then they wrap around

o Forking requires no privileges
e Process tracking is not only a parent/children affair, other processes need to

do tracking too
o Polkit, D-Bus, systemd, ...
o Fragile mechanism + security/authentication = sad faces all around
o E.g.: polkit uses metadata such as starting time to try and mitigate this fragility, and was only
safe to use to authenticate D-Bus peers

https://bugzilla.redhat.com/show_bug.cgi?id=CVE-2019-6133
https://securitylab.github.com/research/ubuntu-apport-CVE-2019-15790/
https://polkit.pages.freedesktop.org/polkit/
https://www.freedesktop.org/wiki/Software/dbus/
https://systemd.io
https://gitlab.freedesktop.org/polkit/polkit/-/blob/master/src/polkit/polkitunixprocess.c?ref_type=heads#L81

Some Ancient History

Kernel feature added starting from v5.3: PID File Descriptors

Valid only until the tracked process has been reaped, never reused

Can be passed to other processes via SCM_RIGHTS messages (AF_UNIX)
Not limited to parent/children

Can be resolved to a PID at any time via /proc/self/fdinfo/<X>, -1 if process is
gone

https://man7.org/linux/man-pages/man2/pidfd_open.2.html
https://man7.org/linux/man-pages/man7/unix.7.html#:~:text=cmsg(3).-,SCM_RIGHTS,-Send%20or%20receive

Some Recent History (1/3)

Kernel v6.5 adds SCM_PIDFD and SO_PEERPIDFD
o SCM_PIDED is equivalent to SCM_CREDENTIALS but with a FD instead of a PID
o SO_PEERPIDED is equivalent to SO_PEERCRED but with a FD instead of a PID
Kernel v6.9 added a new pseudo-filesystem for PID FD nodes in /proc/
o Can now compare entries directly for equality, use statx()
Glibc v2.39 added pidfd_spawn() and pidfd_getpid()
o Equivalent of posix_spawn(), returning FD instead of PID, and shortcut to resolve a PID FD to
a PID
With these changes merged in and available, we can start building interesting

things in userspace

https://github.com/torvalds/linux/commit/5e2ff6704a275be009be8979af17c52361b79b89
https://man7.org/linux/man-pages/man7/unix.7.html#:~:text=before%20Linux%202.6.38).-,SCM_CREDENTIALS,-Send%20or%20receive
https://github.com/torvalds/linux/commit/7b26952a91cf65ff1cc867a2382a8964d8c0ee7d
https://man7.org/linux/man-pages/man7/unix.7.html#:~:text=socket(7).-,SO_PEERCRED,-This%20read%2Donly
https://sourceware.org/git?p=glibc.git;a=commit;h=0d6f9f626521678f330f8bfee89e1cdb7e2b1062
https://sourceware.org/git?p=glibc.git;a=commit;h=e7190fc73dbc8a1f8f94f8ccacd9a190fa5e609c
https://man7.org/linux/man-pages/man3/posix_spawn.3.html

Some Recent History (2/3)

e systemd v253 adds GetUnitByPIDFD() and sd_pidfd_get*() APIs
o Query session/unit/cgroup/etc by FD instead of PID

o PSA: if you use the *_pid_* variants, switch to the *_pidfd_* variants!
e systemd v255 spawns services using pidfd_spawn()
o With fallback for older kernels/libc
o Also takes advantage of CLONE_INTO_CGROUP for race-free cgroup assignments
e systemd v256 switched all internal process tracking from PIDs to PID FDs

o Some hiccups due to kthreads also showing up, but should be all sorted
o Exception: dealing with cgroups, which do PIDs only

https://www.freedesktop.org/software/systemd/man/org.freedesktop.systemd1.html#:~:text=out%20o%20unit)%3B-,GetUnitByPIDFD,-(in%20%20h%20pidfd
https://www.freedesktop.org/software/systemd/man/sd_pidfd_get_owner_uid.html
https://sourceware.org/git?p=glibc.git;a=commit;h=0d6f9f626521678f330f8bfee89e1cdb7e2b1062

Some Recent History (3/3)

e D-Bus spec, dbus-daemon v1.15.8/v1.16.0 (dev), dbus-broker v34 add

ProcessFD to GetConnectionCredentials()
o They will return it only if it has been obtained ‘safely’, i.e. via SO_PEERPIDFD
o PSA: if you use GetConnectionCredentials or GetUnixProcessID, switch to ProcessFD instead
e Polkit v124 uses sd_pidfd* and ProcessFD internally to track processes
o ltis now safe to use to track, authenticate and authorize processes that are not
communicating over D-Bus, for example: Varlink sockets
e Polkit v124 also provides a new ‘system_unit’ subject attribute

o It will allow writing polkit rules such as ‘if (subject.system_unit == "orchestrator.service")
.."as an alternative to adding fixed uid/gid/user/groups to base authorization on

https://gitlab.freedesktop.org/dbus/dbus/-/merge_requests/420
https://gitlab.freedesktop.org/dbus/dbus/-/merge_requests/398
https://github.com/bus1/dbus-broker/pull/312
https://dbus.freedesktop.org/doc/dbus-specification.html#:~:text=error%20is%20returned.-,org.freedesktop.DBus.GetConnectionCredentials,-As%20a%20method
https://gitlab.freedesktop.org/polkit/polkit/-/merge_requests/174
https://gitlab.freedesktop.org/polkit/polkit/-/merge_requests/154

Work in Progress: remove setuid from Polkit Agent

e Polkit authentication agent running in the unprivileged user session -> spawns
SETUID root helper binary that runs PAM session and authenticates

e SETUID binaries are considered harmful, as the environment is under the
control of the unprivileged caller, so attacks are possible and have happened

e Thanks to PID FDs, we can reliably track processes outside of parent/child
relationship

e Agent talks to a socket-activated service, which takes a PID FD and passes it
to Polkit after authentication, so Polkit can reliably check that it is authorizing
the actual process that was authenticated

e https://github.com/polkit-org/polkit/issues/169

https://github.com/polkit-org/polkit/issues/169

What's next?

e Migration to using PID FDs slowly in progress in core userspace components

e Some areas left where PID FDs cannot be used, and they have to be
translated back to PIDs, or there is a lack of a programmatic API

e \Would be good to provide solutions to fill these gaps

e Most are easy, one seems complex

Wishlist: resolve PID FD to PID

e Currently have to reimplement string parsing of /proc/X/fdinfo/Y

e Requires /proc being mounted, and custom string parsing is not ideal

e Glibc implemented a parser and provides a public API for it, but would be nice
to remove even that

e Can we have a programmatic APl instead?
o Newioctl? E.g.:

#define PIDFD_GET PID _IOR(PIDFS_IOCTL_MAGIC, 11, int)
ioctl(pidfd, PIDFD_GET_PID, &pid)

Wishlist: querying creds of a PID FD

e Checking creds of a socket peer is easy via SCM_RIGHTS and friends
e Butwhat if | don’t have a socket, | only have a PID FD?
e Have to resolve PID FD to PID, and then check /proc/PID/

o String parsing, fine for scripts, not ideal elsewhere
o Subject to usual races due to PID, so have to resolve PID FD, parse /proc/ manually, then
again resolve PID FD to ensure nothing changed
e Can we have a programmatic APl to query creds of a PID FD?

o Avoids need for everyone to roll their own proc parser
o Avoids need for double and triple checking that there are no races
o New ioctl? E.g.:

#define PIDFD_GET _CREDS _IOR(PIDFS_IOCTL_MAGIC, 12, struct ucred)
ioctl(pidfd, PIDFD_GET_CREDS, &creds)

Wishlist: <somehow> integrate PID FDs and cgroups

e Cgroups list PIDs, so we have to translate back and forth
e Main usage of PIDs left in systemd

e Can we figure out a way to somehow use PID FDs directly?
o E.g.: ' have a PID FD, what cgroup does it belong to?

#define PIDFD_GET _CGROUPID _IOR(PIDFS_IOCTL_MAGIC, 13, uint64 t)
ioctl(pidfd, PIDFD_GET_CGROUPID, &cgroupid)

o E.g.: | have a cgroup, can | iterate over all the processes using only FDs? Maybe new PIDFD
filesystem can help, maybe something somewhat similar to /proc/N/fd/ ?

Thanks!

Questions?

