
Optimizing Google Search
and beyond with pluggable
scheduling

Barret Rhoden Josh Don
1

A brief history of pluggable
scheduling @ Google

01

2

Motivation

Kernel Rollout Speed Kernel Programming
Constraints

Lack of Specialization

Updating a large fleet of
machines is a slow process,
can take O(months) to update
all machines due to disruption
SLOs.

Updates via userspace are fast!

Would be nice to avoid kernel
constructs like per-cpu
runqueues.

In userspace/BPF we can more
easily implement any kind of
policy we want.

Number of sched classes is
small, and each one has to be
fairly generic.

With pluggable scheduling, we
can easily create application
specific policies.

3

Milestones and future direction

2019 20222020 2021 20242023

Initial experiments with
internal workloads

Architecture shift
heavily towards BPF;
more advanced
policy development.

ghOSt deployed for
specific workloads
such as Search.
Starting to move
policies to
sched_ext.

SOSP paper publishedghOSt development kicks
off

sched_ext collaboration
with Meta

4

https://cs.stanford.edu/~jhumphri/documents/ghost.pdf

Building a scheduling policy
for Google Search

02

5

User
space

Transactions

Messages
Userspace Agents

Statistics, Parameter
Tweaking, Monitoring

Kernel

Kernel
space

Ghost
scheduling class

“BPF
space”

BPF-PNT

BPF-MSG

Application

BPF Agents

CPU scheduling
decisions

BPF
Maps

from “eBPF Kernel Scheduling with Ghost”, LPC ‘22

eBPF Scheduling Model

6

https://lpc.events/event/16/contributions/1365/

● Numerous groups of threads:
○ Query: handle RPCs, various types. O(100us - 10ms)
○ Pollers: important, but noisy. O(10us)
○ Housekeeping: various jobs

● Sensitive to cache locality and CCX placement
● Latency sensitive
● Run on multi-socket (NUMA) machines

Search from 1000 ft.

from “ghOSt: Fast & Flexible User-Space Delegation of Linux Scheduling”, SOSP ‘21

7

https://dl.acm.org/doi/10.1145/3477132.3483542

● Numerous cpus, several thread groups…
○ Let’s spatially partition the machine among those groups

● Two benefits:
○ Cache locality for each group (RPCs, Pollers)
○ Isolate the Pollers to minimize their O(us) interference

● Not using cpu masks (affinity is too “stiff”)
○ Each cpu is assigned to a group: if you want it, you get it (“Dibs”)
○ Can use cpus assigned to other groups if they don’t want it
○ Readjust the assignment periodically from userspace

Policy: cpu soft partitioning

8

● Each cpu is assigned to a CCX runqueue, many-to-one
● High L3 cache locality, but less cpu / core locality
● Rapid assignment of threads to cpus

○ No head-of-line blocking
○ No waiting for the load balancer
○ Cuts down on latency

● Still try to keep threads on their previous cpu, but don’t wait

Policy: per-CCX runqueues

9

● Different policy for different types of thread (e.g. RPC, Poller)
● RPCs:

○ Each CCX’s runqueue sorts threads by their RPC deadline (EDF)
○ Search tells us the deadline via a giant BPF ARRAY_MAP (soon, an arena!)
○ Keep tasks on cpu until complete. No quanta or time slicing!

● Pollers:
○ Just get on any cpu quickly. (FIFO)
○ Future work: throttle their cpu partition if the app says they waste cycles.

Policy: app-specific pick_next_task()

The array map and other stuff from “eBPF Shenanigans with Flux”, LPC ‘23

10

https://lpc.events/event/17/contributions/1601/

● Expressed this Search policy as a hierarchy of schedulers
○ Numerous cpus, several thread groups
○ Each thread group gets its own scheduler (struct + code)

● Flux is a framework for writing hierarchical schedulers and for composing
multiple scheduling policies

● Top of hierarchy: scheduler of subschedulers
○ Soft partitioning of cpus to groups of threads

● Leaf: typical thread scheduler
○ Assigns threads to cpus: Group / Application-specific policy

Putting it all together: Flux

Flux is from “eBPF Shenanigans with Flux”, LPC ‘23, and the Ghost repo

11

https://lpc.events/event/17/contributions/1601/
https://github.com/google/ghost-userspace/blob/main/third_party/bpf/flux_header_bpf.h

Putting it all together: Flux

12

Dibs

RPC POLLER

Assign cpus to subschedulers (groups of threads):
- Soft partition cpus
- nr_cpus based on child’s load
- Pack into CCXs for locality

Schedule threads onto cpus:
- Per CCX runqueues
- EDF Policy

Schedule threads onto cpus:
- Single runqueue
- FIFO policy

cpucpucpu cpu cpu cpucpu cpu

● Single node benchmark, testing data, compared to CFS:
○ 10% more QPS
○ 27% less p50 latency
○ 14% less p90 latency
○ 3% less p99 latency

Results

13

General purpose
scheduling policies and
CFS

03

14

● We cannot write a bespoke policy for everyone (and most don’t need one)

What about general purpose scheduling?

15

● We cannot write a bespoke policy for everyone (and most don’t need one)

1. Can we write a general purpose scheduler that improves on tradeoffs made in

CFS?

2. Can we layer policy on a machine to support some tasks with a bespoke policy,

and everything else on a general purpose policy?

3. Can any of the lessons we learn be applied to CFS?

What about general purpose scheduling?

16

● Treat cgroups as a first-class entity => map groups of tasks to groups of cpus

○ Threads of a job stay more closely together, rather than spray to all cpus

○ Soft affinity (prefer cpus X-Y, but allow spillover)

○ Fits nicely with chiplet architecture

● Iterate on policy to help enforce latency bounds

○ Experiment with deadline-driven mechanics, such as EEVDF

● Tuning scheduling knobs

○ Replicating existing knobs (migration_cost, wakeup_latency, etc.) and tuning with ML

○ Experimenting with new knobs

How to Improve upon CFS

17

How do we Layer Policy

18

machine root policy

Job A Job B Default policy

RPC service Transcoding service

policies request/release cpus from/to
their parent

Here, we could create the following:
● Machine policy configured to give Job A and Job B their own

set of cores, all other jobs scheduled via our default CFS-like
policy

● Job A splits its work into two buckets: RPC and transcoding
○ Job A prioritizes cpu requests from the RPC service
○ RPC service focuses on fast, FIFO handling of inbound

RPCs
○ Transcoding service focuses on batch, cpu bound,

round-robin processing

● Flux: a scheduler of schedulers, in BPF

● BYOP: Bring your own policy

● Flux allocates cpus to policies

○ Can change the allocation dynamically to share time for multiple policies

○ Policies use callbacks to register a cpu being given or taken away

How do we Layer Policy

19

Q&A
04

20

