Resolve and standardize

early access to hardware
for automotive industry

with Linux

Khasim Syed Mohammed

Engineering Lead — Texas Instruments

i3 TExAs INSTRUMENTS



Who am | ?

* Linux device driver developer 2002-2012 with Texas Instruments, though most of kernel contributions
wentin 2.6 ©

* Founder member for beagleboard.org with Jason Kridner

» Tech lead at Linaro (2012-2022)
* 64bit Android on Arm software simulators
* Project Ara — Modular phone project from Google
* Android on Arm Servers with Docker containers
+ Arm’s N1SDP yoctification for UEFI and other kernel components.

* Back in Texas Instruments (2022) as Engineering Lead for Sitara MPU products.
+ Getting opportunity to work closely with automotive industry,
» who are on proprietary operating systems for many use cases
* relying on on-chip MCUs for safe and time critical applications.

W3 TEXAS INSTRUMENTS



Why am | here ?

Share and Learn to build the automotive use cases the “Linux” way with Linux subsystems
(Kernel, U-Boot, distros) :

Safety \ « Enable fault less systems with proven o _
. Certification / safety qualified “open source” software. The solution industry has found is
——————— - either with
» CAN response < than 100 msec. - Heterogeneous processors (on
—_——_——_———— . + Wake up response on Ethernet < 150 msec. chip MCUSs) that is not
Performance « Audio tone on speakers < 500 msec. scalable.
. (Early boot) , » Camera stream to screen < 750 msec
—————— + Display Animated graphics < 1 sec. :
. andpmzre grap - With non- standard (no open
standards followed) and not so
—— - ——— N Enable power efficient systems. Linux friendly approach.
Power 1 » Elaborate PM policies for remote cores.
. Management » User space hooks to handle power modes.
—————— - » Suspend to RAM policies.

W3 TEXAS INSTRUMENTS



What | want to walk away with ?

* Deep dive into exact problems and the current solutions and how we migrate the current RTOS based
solutions to switch to Linux “only” based solutions.

* How we standardize the "Linux late attach" with heterogeneous SOC.

 If I could find representatives from the automotive OEM, SOC manufacturers and Linux kernel and user
space maintainers to :

— Collaborate and help in defining "Linux automotive" standards for the auto use case implementation

— Harden & improvise the Linux kernel & drivers to meet the key performance requirements.

— Learn from the subject matter experts here and incorporate the learnings in our solutions offered to
customers / industry.

Long term solution
(Standardized, Linux based
public and collaborative)

Problem Statement
(ask)

Current Solution
(lacks community collaboration)

W3 TEXAS INSTRUMENTS



1: “Safe & Secure” Boot Loaders

Linux - way

L}

con

=
o
o)
=1

Why Special Boot loaders ?

Fal
Falcon

l
.
i

Auto - way

Filesystem

SPL is not tuned to required performance
(boot < 10 msec)

SPL is not easily structured to boot remote
heterogenous cores (at least for TI)

SPL doesn’t meet safety compliance (TUV
certified) with MISRA C and LDRA tool
compliance.

SPL is more prone to security vulnerabilities
(as per industry stalwarts)

SPL to Linux handoff need tweaks
(peripherals already configured by SPL
before Linux)

Is public open source SBL an option ?

Tl has public SBL, open for
community collaboration & we can
commit to safety qualification of
software.

TI SBL Public Sources : https://github.com/TexaslInstruments/mcupsdk-core/tree/next/examples/drivers/boot

W3 TEXAS INSTRUMENTS


https://github.com/TexasInstruments/mcupsdk-core/tree/next/examples/drivers/boot

2 : Devices (display, camera, sensors) In Action instantly

Why Configure early ? And why DMA /12C ?

SPL

T
w
o
o
—

Linux - way

Configures
sensor using
DMA or 12C

Peripheral
is ready to
use

Micro
controller

Configures
sensor
using DMA
or I2C

Auto - way

Peripheral
is ready to
use

Few sensors have more than 4K registers.

Registers are configured over 12C (non
contiguous) or DMA.

Device should be ready before Linux drivers
and apps are up. Can’t spend time after boot.

Current solution uses MCU - brings in safety
compliance but increases the cost of SOCs.

Linux late attach : while MCUs have
performed all the initializations and Linux
takes over, the handoff isn’t clear for every
driver (example: simple framebuffer)

What'’s the long term solution ?

Make U-Boot / SPL multi-threaded ?

If DMA/I2C triggered from U-Boot, we need a
standard method to release, reallocate the
channels, memory region.

How to utilize the multiple “A”-cores

Current solution: https://www.ti.com/tool/PROCESSOR-SDK-J721E

W3 TEXAS INSTRUMENTS


https://www.ti.com/tool/PROCESSOR-SDK-J721E

3 : Power management with remote cores

Power Management and handle remote cores.

Linux - way

Load firmware
for remote cores

. Mimics the Linux
way

* Isn’t sufficient with
Industry ask
especially with EV
picking up in every
segment.

PM core

Main core

<+

Py, el py
35 5 - .
@) @) O <
7 7 7

Auto - way

Every SOC
company will define
their own
framework, tools
and publish
‘incomparable”
results

On suspend

Custom IPC

Notify cores

Preserve state in remote core (not
strict)

Shutdown

Reload firmware on resume

Core2 Corel Core0

No standards defined for notification

— ex: how long to wait, min/max expectations
from remote core after notify, etc..

Every reload of firmware costs extra cycles for
authentication of firmware - impacts resume
latency numbers.

Cores are turned on/off abruptly, the states aren’t
preserved before suspend, left for RTOS world to
decide.

Scaling frequency up/down dynamically need
further notification mechanism which isn’t available
for remote cores.

There are multiple different modes (other than just
deepsleep, stndby, etc) where Linux user space
hooks are missing.

What'’s the long term solution ?

Need an Industry standard — RTOS and Linux
community should collaborate and engage in
defining this standard.

Benchmarking tools should be made available.

W3 TEXAS INSTRUMENTS



4 . Early Ethernet / Connectivity Notifications

Linux way

Main
core

SPL

l

CPSW Probe
System-networkd

- MAC open
Phy Link Up

Auto - way

Main
core

CPSW Probe

- MAC open
System-networkd
Phy Link Up

Improvise Phy Link up time :

* Improvement because the MAC port open
function call is pushed into probe from system-
networkd

* Phy link up time depends on the phy and its
configuration used. It varies from boot to boot.
This was the best time.

Component MAC open in MAC open in
networkd driver probe
Kernel ~920 ms ~10 ms

MAC port open

Phy link up 3100 ms ~ 1300

Total Boot time * 2.5to 3 seconds can be saved.

Long terms solutions

.

What's alternative to MAC open in probe ?

CAN has been left to the mercy of AutoSAR — No Linux/SPL
possibilities for early CAN response < 50ms

Ethernet stack require tweaks for network boot, packet
handling by firmware on MCUs — need an upstream path.

W3 TEXAS INSTRUMENTS



Let’s not Conclude - let’s discuss

— Other questions :

» Has Android automotive OS solved the issues being discussed here — No. Are they applicable
there as well ? Yes.

»  Key question that pops up: What happens when Linux kernel crashes ? Why is this still a doubt
? How to harden Linux enough, what other constraints to impose on application/user space to
gain the confidence.

» Is ELISA the forum for any standardized mechanisms to implement these hacks and fixes in a
standardized way ?

— How we get safety certification out of the way for SPL, U-Boot, ATF and Linux subsystems.
— Are there more such fixes required at product level that needs to be further discussed.

— Looking for a forum where we discuss this beyond respective kernel mailing list.

If interested to collaborate and work with us on these initiatives : khasim@ti.com

W3 TEXAS INSTRUMENTS



Thank you.

Contact Information: Collaborate with us @

— https://www.ti.com/linux

— khasim@ti.com

— nsekhar@ti.com — http://opensource.ti.com/
— L-keerthy@ti.com — https://www.ti.com/processors
— vigheshr@ti.com

— https://www.ti.com/edgeali
— https://qithub.com/Texaslnstruments

— srk@ti.com

Thanks to open source solutions and partners

# . THE .
©Baylisre  Konsulko  @ipeogebonrdory [ JLINUX L1030

FOUNDATION

www. ti.com/sitara y

i3 TExAs INSTRUMENTS


mailto:khasim@ti.com
mailto:nsekhar@ti.com
mailto:j-keerthy@ti.com
mailto:vigneshr@ti.com
mailto:srk@ti.com
https://www.ti.com/linux
http://opensource.ti.com/
https://www.ti.com/processors
https://www.ti.com/edgeai
https://github.com/TexasInstruments

