
UEFI Setvariable at Runtime
Problems, status and
solutions
Ilias Apalodimas, Linaro
ilias.apalodimas@linaro.org

The UEFI spec
● Getting traction within the embedded device ecosystem
● Embedded Base Boot requirements (EBBR) specification

○ Defines an interface between platform firmware and an operating system that is
suitable for embedded platforms

○ Uses a small subset of EFI interfaces
○ Tries to deal with the lack of consistency between platforms which often requires

per-platform customization to get an OS image to boot on multiple platforms

https://arm-software.github.io/ebbr/index.html#document-chapter1-about

UEFI spec - Key storage requirements
● Defined in §32.3.6. Platform Firmware Key Storage Requirements
● PK - The public key must be stored in non-volatile storage which is tamper and

delete resistant
● KEK - The public key must be stored in non-volatile storage which is tamper

resistant. Careful consideration should be given to the security and configuration
of any out-of-band management agent (e.g. hypervisor or service processor) such
that the platform cannot exploit the management agent in order to circumvent
Secure Boot

● Basically we need to store the variables in tamper protected and delete resistant
medium which is always under the control of the firmware

Embedded boards status
● Having a dedicated delete resistant and tamper protected flash under the control

of Secure world is rare
○ Anyone aware of any?

● Many boards have an eMMC nowadays
● What if we could store the EFI variables there …

U-Boot status
● Supports a variety of EFI protocols. Compliant with EBBR since 2021.04
● Can boot distros on embedded boards – as long as the board drivers are included
● Has two ways of storing EFI variables

○ In a file in the ESP partition
○ In an RPMB partition of an eMMC

● Copies variables in memory and provides GetVariable and GetNextVariableName
at runtime

● But doesn’t support SetVariable or QueryVariableInfo at runtime

https://github.com/ARM-software/ebbr/

Need for RT variable services
● Runtime services are rarely needed in an OS
● EBBR only defines SetVirtualAddressMap and ConvertPointer as mandatory

runtime services
● SetVariableRT is required when

○ Distro installers need to set SHIM as the first boot option or any other boot option
(usually Boot0000)

○ Control BootOrder and/or BootNext and boot a different OS
○ Set OsIndications to trigger a capsule update on-disk

● Anything else? PSTORE almost impossible due to supplicant complications (see
below)

● Distro installers used to fail with a scary error if SetVariable failed
○ It’s just a warning now on most installers
○ The boards can still boot even without setting the Boot0000 variable

Variables in an RPMB & U-Boot
● Adheres to the EFI spec delete resistant and tamper protected medium

requirements
● Needs OP-TEE, which launches StandAloneMM from EDK2 as-is
● StandAloneMM performs all the variable validation & authentication and uses

OP-TEE APIs to read/write from/to the RPMB
● Authenticated variables are supported
● The cryptographic checks happen in the Secure World
● Since the eMMC is in control of the non-secure world (firmware or OS) we need

a userspace supplicant to mediate the RPMB reads & writes

Variable accesses in U-Boot

RPMB problems
● Doing a SetVariableRT requires the kernel to call into firmware runtime services
● Since we use OP-TEE and StandAloneMM we need to retain runtime sections of

that
● Remember the supplicant requirement?
● When the request gets processed and exits OP-TEE it will search for the

supplicant in that (firmware)context
● So we have to retain the supplicant as well
● And the eMMC drivers …
● But the kernel is up and running at that point
● The eMMC is now controlled by the kernel and his userspace supplicant …

A ‘solution’
● Patches under review
● OP-TEE provides a discoverable ‘bus’
● Devices and services reside on that bus and can be scanned e.g. a fTPM
● We can add StandAloneMM to that ‘bus’ and make it a scannable service
● Once the OP-TEE module comes up it looks for a ‘variable support’ service – in our

case StandAloneMM
● When the userspace supplicant is launched a _probe() function will run, which will

○ Replace the runtime calls with OP-TEE provided ones which call directly into OP-TEE and
eventually StandAloneMM

○ The efivarfs is mounted as RO if SetvariableRT isn’t supported. A notifier chain
automatically remounts it as RW

https://lore.kernel.org/linux-efi/20231107054057.1893-2-masahisa.kojima@linaro.org/T/#m1f2eefacafa2e3abee182efe0f58a7d6f9ecea23

The good
● eMMC and RPMB partitions are described in a spec
● StandAloneMM is self relocatable and as a result hardware independent
● Single binary that controls variables across U-Boot and EDK2
● It is also described in the PI specification
● Solves distro problems as far as SetVariable is concerned
● Allows embedded platforms to use CapsuleUpdates

The bad
● Breaks the EFI spec
● The kernel relies on a userspace application
● But this has always been the case for OP-TEE Trusted Applications which require

RPMB accesses (e.g. fTPM)
○ Working towards an in-kernel supplicant which would wire up the requests directly to

the eMMC subsystem
● Depending on the eMMC speed/driver the write dance might be a bit slow

○ OP-TEE also encrypts the data
● The entire solution is complex and requires 3 projects to play along – U-Boot,

EDK2 and OP-TEE

Variables in a file
● UEFI authenticated variables are not supported
● The EFI spec doesn’t standardize the variable format

○ But EBBR does – explicitly leaving out Authenticated variables
● U-Boot can store non-authenticated variables in a file
● Those are copied in memory during boot and provide GetVariable etc
● SetVariable is obviously not supported

https://arm-software.github.io/ebbr/index.html#document-chapter5-variable-storage

Possible solutions
● Teach efitools to edit the file directly?
● Easy to implement if the format is agreed upon

○ Easy to notify/handle failures to write variables
○ Once a variable are written the kernel and file view are out of sync
○ Will need to reboot, but based on the use-cases above we usually reboot after setting a

variable anyway
○ Too hacky

Or better
● Teach the firmware to support SetvariableRT on the memory backend
● Have a watcher application in efivarfs that syncs memory <-> file storage

○ Breaks the EFI spec since variable writes have to complete before returning success
○ Hard to notify about failures e.g. writing to file fails

Or
● Replace RT calls and write to a file?
● Too complicated for no apparent reason

Reads
● https://www.linaro.org/blog/protected-uefi-variables-with-u-boot/
● https://www.linaro.org/blog/uefi-secureboot-in-u-boot/
● https://www.linaro.org/blog/journey-to-systemready-compliance-in-u-boot/

https://www.linaro.org/blog/protected-uefi-variables-with-u-boot/
https://www.linaro.org/blog/uefi-secureboot-in-u-boot/
https://www.linaro.org/blog/journey-to-systemready-compliance-in-u-boot/

Thank you

