UEFI Setvariable at RUft !
Problems, status and ™ e
solutions

llias Apalodimas, Linaro
ilias.apalodimas@linaro.org T

The UEFI spec

e (Getting traction within the embedded device ecosystem
e Embedded Base Boot requirements (EBBR) specification

(@)

Defines an interface between platform firmware and an operating system that is
suitable for embedded platforms

Uses a small subset of EFl interfaces

Tries to deal with the lack of consistency between platforms which often requires
per-platform customization to get an OS image to boot on multiple platforms

Linaro

https://arm-software.github.io/ebbr/index.html#document-chapter1-about

UEFI spec - Key storage requirements

e Defined in §32.3.6. Platform Firmware Key Storage Requirements

e PK - The public key must be stored in non-volatile storage which is tamper and
delete resistant

e KEK - The public key must be stored in non-volatile storage which is tamper
resistant. Careful consideration should be given to the security and configuration
of any out-of-band management agent (e.g. hypervisor or service processor) such
that the platform cannot exploit the management agent in order to circumvent
Secure Boot

e Basically we need to store the variables in tamper protected and delete resistant
medium which is always under the control of the firmware

Linaro

Embedded boards status

e Having a dedicated delete resistant and tamper protected flash under the control

of Secure world is rare
o Anyone aware of any?
e Many boards have an eMMC nowadays

e What if we could store the EFI variables there ...

Linaro

U-Boot status

Supports a variety of EFI protocols. Compliant with EBBR since 2021.04
Can boot distros on embedded boards — as long as the board drivers are included

e Has two ways of storing EFI variables

o In afile in the ESP partition
o Inan RPMB partition of an eMMC

e Copies variables in memory and provides GetVariable and GetNextVariableName
at runtime

e But doesn't support SetVariable or QueryVariableInfo at runtime

Linaro

https://github.com/ARM-software/ebbr/

Need for RT variable services

Runtime services are rarely needed in an OS
EBBR only defines SetVirtualAddressMap and ConvertPointer as mandatory
runtime services

e SetVariableRT is required when

o Distro installers need to set SHIM as the first boot option or any other boot option
(usually Boot00O0O0)

o Control BootOrder and/or BootNext and boot a different OS

o Set Oslndications to trigger a capsule update on-disk

e Anything else? PSTORE almost impossible due to supplicant complications (see
below)
e Distro installers used to fail with a scary error if SetVariable failed

o It's just a warning now on most installers
o The boards can still boot even without setting the Boot000O variable

Linaro

Variables in an RPMB & U-Boot

Adheres to the EFI spec delete resistant and tamper protected medium
requirements

Needs OP-TEE, which launches StandAloneMM from EDK2 as-is

StandAloneMM performs all the variable validation & authentication and uses
OP-TEE APIs to read/write from/to the RPMB

Authenticated variables are supported

The cryptographic checks happen in the Secure World

Since the eMMC is in control of the non-secure world (firmware or OS) we need
a userspace supplicant to mediate the RPMB reads & writes

Linaro

Variable accesses in U-Boot

| _Read/Write to RPMB

TEEC_InvokeCommand_
r

OP-TEE message_
»s

RPC calls

MM buffer

>

FFA calls to @

P-TEE Storage API for RPMB

some time later

Read/Write finisheL

OP-TEE resp

MM buffer

Y

RPMB problems

Doing a SetVariableRT requires the kernel to call into firmware runtime services
Since we use OP-TEE and StandAloneMM we need to retain runtime sections of
that

Remember the supplicant requirement?

When the request gets processed and exits OP-TEE it will search for the
supplicant in that (firmware)context

So we have to retain the supplicant as well

And the eMMC drivers ...

But the kernel is up and running at that point

The eMMC is now controlled by the kernel and his userspace supplicant ...

Linaro

A ‘solution’

Patches under review

OP-TEE provides a discoverable ‘bus’

Devices and services reside on that bus and can be scanned e.g. a fTPM

We can add StandAloneMM to that ‘bus’ and make it a scannable service

Once the OP-TEE module comes up it looks for a ‘variable support’ service —in our
case StandAloneMM

When the userspace supplicant is launched a _probe() function will run, which will
o Replace the runtime calls with OP-TEE provided ones which call directly into OP-TEE and
eventually StandAloneMM
o The efivarfs is mounted as RO if SetvariableRT isn’t supported. A notifier chain
automatically remounts it as RW

Linaro

https://lore.kernel.org/linux-efi/20231107054057.1893-2-masahisa.kojima@linaro.org/T/#m1f2eefacafa2e3abee182efe0f58a7d6f9ecea23

The good

eMMC and RPMB partitions are described in a spec

StandAloneMM is self relocatable and as a result hardware independent
Single binary that controls variables across U-Boot and EDK?2

It is also described in the Pl specification

Solves distro problems as far as SetVariable is concerned

Allows embedded platforms to use CapsuleUpdates

Linaro

The bad

Breaks the EFI spec
The kernel relies on a userspace application

e But this has always been the case for OP-TEE Trusted Applications which require
RPMB accesses (e.g. fTPM)

o Working towards an in-kernel supplicant which would wire up the requests directly to
the eMMC subsystem
e Depending on the eMMC speed/driver the write dance might be a bit slow
o OP-TEE also encrypts the data
e The entire solution is complex and requires 3 projects to play along — U-Boot,

EDK2 and OP-TEE

Linaro

Variables in a file

e UEFI authenticated variables are not supported
e The EFI spec doesn’t standardize the variable format
o But EBBR does — explicitly leaving out Authenticated variables
U-Boot can store non-authenticated variables in a file

Those are copied in memory during boot and provide GetVariable etc
e SetVariable is obviously not supported

Linaro

https://arm-software.github.io/ebbr/index.html#document-chapter5-variable-storage

Possible solutions

e Teach efitools to edit the file directly?

e FEasy to implement if the format is agreed upon

o Easy to notify/handle failures to write variables
o Once a variable are written the kernel and file view are out of sync
o Will need to reboot, but based on the use-cases above we usually reboot after setting a

variable anyway
o Too hacky
Or better

e Teach the firmware to support SetvariableRT on the memory backend

e Have a watcher application in efivarfs that syncs memory <-> file storage
o Breaks the EFI spec since variable writes have to complete before returning success
o Hard to notify about failures e.g. writing to file fails

Or
e Replace RT calls and write to a file?
e Too complicated for no apparent reason Linaro

Reads

e https://www.linaro.org/blog/protected-uefi-variables-with-u-boot/
e https:/www.linaro.org/blog/uefi-secureboot-in-u-boot/
e https://www.linaro.org/blog/journey-to-systemready-compliance-in-u-boot/

https://www.linaro.org/blog/protected-uefi-variables-with-u-boot/
https://www.linaro.org/blog/uefi-secureboot-in-u-boot/
https://www.linaro.org/blog/journey-to-systemready-compliance-in-u-boot/

Thank you

