The chatlenge PITA of

compiling for verified targets

Jose E. Marchesi

November 13, 2023



This is an unsolvable problem



Motivation

We need to make compiled BPF practical.

In GCC:
1 Achieve parity with clang/llvm.
2 Compile and run all kernel BPF selftests.
3 Compile and run all actually existing BPF programs.

4 Compile and run as many potentially existing BPF programs
as possible.



Verified targets

——=> Linux verifier

foo.c ---> foo.o ---> Windows PREVAIL ---> run
—---> (Others...
I I
- reject

® Verification vs. sandboxing.

® Assembly programming vs. higher-level languages.
® Impact of optimizing compilers.

® Practical diagnosis.

o Multiple verifiers, in multiple versions.

® Verifiers themselves need to be bounded.

® Require metadata in form of debug info.



Toolchain Challenges

® Dealing with architectural peculiarities
® Generating verifiable code (big deal)

® Making compiling verifiable code practical and tolerable



What can lead to unverifiable code

® Unverifiable source constructs
— error.

® Optimization-driven transformation
— if not avoidable, error.



Approach 0: do nothing

Compiler behavior is influenced by the backend.

But optimizations are handled as usual.

Good enough for DTrace's BPF support routines.
Probably not good enough for the kernel BPF selftests.
For sure not good enough for actually existing BPF.

Strategy currently used in bpf-unknown-none-gcc :P



Approach 1: disable all optimizations

Impact on performance.

Impact on program size, which is limited.

Partial solution: unverifiable source constructs remain.
Actually existing BPF requires -O2 or higher.
Potentially existing BPF will benefit from opts.



Approach 2: disable some optimizations

Disable optimizations that lead to unverifiable code.
Should be automatic to be practical.
verifier — constraints — IR contract

Process:

1 Try pass.
2 Check constraints in resulting IR.
3 If constraints not respected, discard pass effects.

Bad granularity: a pass may perform many transformations.
Can GCC discard pass effects after the pass is run?



Approach 3: target
cou nterpasses/a ntipasses

Target adds anti-passes that undo some transformations
performed by optimization passes.

Better granularity.

Pretty neutral to rest of the compiler.
Strategy currently used by clang/LLVM.
Fragile: forks.

Maintenance hell.



Approach 4: target driven pass tailoring

BPF backend disables particular transformations by hooking in
passes.

Strategy currently used by clang/LLVM.
Other compiler maintainers are reluctant.

Legal transformations become “illegal”.



Approach 5: generic pass tailoring

We already have -Osmall, -Ofast.

Let's add -Overifiable (or -Opredictable).
Passes adapt to the “verifiable” criteria.
Tradeoffs.

Not restricted to any particular backend.

May be useful for “normal” targets too.



Approach 6: language level support

® You-must-know pragmas.

#pragma loop must bound 0..64
for (i = 0; i < x; ++i)

{
}

Fail at compile-time if the compiler cannot guarantee with
100% certainty, all compilation stages considered, that the
bounds of the loop are indeed between 0 and 100.

® Optimize-or-fail pragmas: always_inline, musttail, etc.



Approach 7: assembler support

Put the kernel verifier in the assembler.

® Maintenability concerns.
® Licensing concerns.

Invoking the kernel verifier (syscall) from the assembler.

® Portability concerns.
® Cross-assembling concerns.
® |nterface concerns: parsing verifier output.

Assembly time static analyzer based on ginsns and cfg.

DWAREF to associate errors with source constructs.



Discussion

Solution is likely a combination of approaches and techniques.
Must be pre-meditated and consensuated.

Shouldn’t be BPF centric.
Coordination between toolchains
® BPF standardization process.
bpf@vger mailing list.
GCC BPF wiki: https://gcc.gnu.org/wiki/BPFBackEnd

Clang/llvm issues: https://reviews.llvm.org
BPF office hours.



A few extra discussion items

Inclusion of libc headers in BPF programs, like stdint.h.
Assembler: register names as symbols in certain contexts.
Optimization-generated funcalls, like strcmp.

Keeping kernel sefltests building with GCC: CI.



Thanks



