
The
���

���
���

�XXXXXXXXXX
challenge PITA of

compiling for verified targets
Jose E. Marchesi

November 13, 2023

This is an unsolvable problem

Motivation

We need to make compiled BPF practical.

In GCC:
1 Achieve parity with clang/llvm.
2 Compile and run all kernel BPF selftests.
3 Compile and run all actually existing BPF programs.
4 Compile and run as many potentially existing BPF programs

as possible.

Verified targets

---> Linux verifier
foo.c ---> foo.o ---> Windows PREVAIL ---> run

---> Others...
| |
+------------------------- reject

• Verification vs. sandboxing.
• Assembly programming vs. higher-level languages.
• Impact of optimizing compilers.
• Practical diagnosis.
• Multiple verifiers, in multiple versions.
• Verifiers themselves need to be bounded.
• Require metadata in form of debug info.

Toolchain Challenges

• Dealing with architectural peculiarities
• Generating verifiable code (big deal)
• Making compiling verifiable code practical and tolerable

What can lead to unverifiable code

• Unverifiable source constructs
→ error.
• Optimization-driven transformation
→ if not avoidable, error.

Approach 0: do nothing

• Compiler behavior is influenced by the backend.
• But optimizations are handled as usual.
• Good enough for DTrace’s BPF support routines.
• Probably not good enough for the kernel BPF selftests.
• For sure not good enough for actually existing BPF.
• Strategy currently used in bpf-unknown-none-gcc :P

Approach 1: disable all optimizations

• Impact on performance.
• Impact on program size, which is limited.
• Partial solution: unverifiable source constructs remain.
• Actually existing BPF requires -O2 or higher.
• Potentially existing BPF will benefit from opts.

Approach 2: disable some optimizations

• Disable optimizations that lead to unverifiable code.
• Should be automatic to be practical.
• verifier → constraints → IR contract
• Process:

1 Try pass.
2 Check constraints in resulting IR.
3 If constraints not respected, discard pass effects.

• Bad granularity: a pass may perform many transformations.
• Can GCC discard pass effects after the pass is run?

Approach 3: target
counterpasses/antipasses

• Target adds anti-passes that undo some transformations
performed by optimization passes.
• Better granularity.
• Pretty neutral to rest of the compiler.
• Strategy currently used by clang/LLVM.
• Fragile: forks.
• Maintenance hell.

Approach 4: target driven pass tailoring

• BPF backend disables particular transformations by hooking in
passes.
• Strategy currently used by clang/LLVM.
• Other compiler maintainers are reluctant.
• Legal transformations become “illegal”.

Approach 5: generic pass tailoring

• We already have -Osmall, -Ofast.
• Let’s add -Overifiable (or -Opredictable).
• Passes adapt to the “verifiable” criteria.
• Tradeoffs.
• Not restricted to any particular backend.
• May be useful for “normal” targets too.

Approach 6: language level support

• You-must-know pragmas.
pragma loop must bound 0..64
for (i = 0; i < x; ++i)
{

...
}

Fail at compile-time if the compiler cannot guarantee with
100% certainty, all compilation stages considered, that the
bounds of the loop are indeed between 0 and 100.
• Optimize-or-fail pragmas: always_inline, musttail, etc.

Approach 7: assembler support

• Put the kernel verifier in the assembler.
• Maintenability concerns.
• Licensing concerns.

• Invoking the kernel verifier (syscall) from the assembler.
• Portability concerns.
• Cross-assembling concerns.
• Interface concerns: parsing verifier output.

• Assembly time static analyzer based on ginsns and cfg.
• DWARF to associate errors with source constructs.

Discussion

• Solution is likely a combination of approaches and techniques.
• Must be pre-meditated and consensuated.
• Shouldn’t be BPF centric.
• Coordination between toolchains

• BPF standardization process.
• bpf@vger mailing list.
• GCC BPF wiki: https://gcc.gnu.org/wiki/BPFBackEnd
• Clang/llvm issues: https://reviews.llvm.org
• BPF office hours.

A few extra discussion items

• Inclusion of libc headers in BPF programs, like stdint.h.
• Assembler: register names as symbols in certain contexts.
• Optimization-generated funcalls, like strcmp.
• Keeping kernel sefltests building with GCC: CI.

Thanks

