
Generating BPF Verifier
Friendly Code with Clang

BPF Prog Compilation and Verification

- Typical BPF prog is written in C
- Compile with clang/gcc and generate an object file
- The prog is loading into the kernel and get verified inside the kernel before

executing the prog.
- The main goal of verification is to ensure that

- The prog eventually will end, and
- The prog won’t cause kernel crash (e.g., illegal memory access caused memory crash, etc.)

BPF C
program Obj File Verification Run

User Space Kernel Space

Linux Kernel Verifier - 1

- Flow/path sensitive: Every possible path is explored to
ensure prog is sound

- A few techniques in verifier:
- Maintain reg/stack states during path exploration.
- Pruning: if a path has been explored and covered by a previous

exploration, skip it.
- Simple liveness analysis to single out store without further load.
- Some reg/stack states need precise range (e.g., for comparison, or some

helpers), but some states does not care about the value (e.g., storing a
value into the map).

- The reg/stack states are implemented with TNUM.

https://github.com/torvalds/linux/blob/master/kernel/bpf/tnum.c

Linux Kernel Verifier - 2

- Complete formal verification is NP-complete, also we want
to

- Fast verification time as sometime this is critical, e.g., replace a new prog
with an old prog.

- Control verifier complexity.

- So verifier won’t be able to maintain too much
information (e.g., not straightforward relationships
among registers/stack_slots) at any given moment,
this may cause verification failure.

How to Prevent Verification Failure

- Let clang/gcc generate verifier friendly code
- In llvm BPF backend, some special passes are implemented which modify IR

to prevent certain optimization which may cause verification failure
- User modifies the source code
- Source codes can be modified by changing code logic, adding asm code for

force certain ordering, or using inline asm.
- Manual source code change can be minimized if LLVM can generate more

verifier friendly code.

An Exercise with No LLVM BPF Special passes

- https://reviews.llvm.org/D147968

/* Source */
...
id = ctx->protocol;
if (id < 4 || id > 12)
 return 0;
*(u64 *)((void *)v + id) = 0;
...

/* pseudo IR */
...
id = ctx->protocol;
tmp = id;
tmp += -13;
if (tmp < 0xfffffff7) goto next;
v += id;
*v = 0;
next:

Verification failure due
to the ‘id’ range in ‘v
+= id’ is not known by
verifier.

https://reviews.llvm.org/D147968

Patching LLVM for Verifier Limitations In Old Kernels

- Sometimes, even if a verifier limitation is fixed in the latest kernel, it may be
hard to backport. In such cases, it is a good idea to enhance LLVM to prevent
certain code patterns as old kernel can use newer LLVM to compile bpf prog.

- https://reviews.llvm.org/D147968

for (i = 0; (i < VIRTIO_MAX_SGS) && (i < out_sgs); i++) {
 for (n = 0, sgp = get_sgp(sgs, i);
 sgp && (n < SG_MAX);
 sgp = __sg_next(sgp)) {
 bpf_probe_read_kernel(&len, sizeof(len),
 &sgp->length);
 length1 += len;
 n++;
 }
}

upper = MIN(VIRTIO_MAX_SGS, out_sgs);
for (i = 0; i < upper; i++) {
 for (n = 0, sgp = get_sgp(sgs, i);
 sgp && (n < SG_MAX);
 sgp = __sg_next(sgp)) {
 bpf_probe_read_kernel(&len,
 sizeof(len), &sgp->length);
 length1 += len;
 n++;
 }
}

https://reviews.llvm.org/D147968

Source Code Change to Workaround Verification Failure

 /* kernel BPF selftest: exhandler_kern.c */
 work = task->task_works;
 func = work->func;
 /* Currently verifier will fail for `btf_ptr |= btf_ptr` * instruction.
 * To workaround the issue, use barrier_var() and rewrite as below to
 * prevent compiler from generating verifier-unfriendly code.
 */
 barrier_var(work);
 if (work)
 return 0;
 barrier_var(func);
 if (func)
 return 0;
 exception_triggered++;

More
examples can
be found in
kernel bpf
selftests.

How to Generate Verifier Friendly Code?

- Currently approach: LLVM BPF backend passes
- We might be able to do more for some bpf selftest source hacks

- Alternative try in bpf upstream:
- https://reviews.llvm.org/D147968
- Try to provide TTI (TargetTransformInfo) hooks in the middle-end optimization so BPF

backend can have a say whether a particular transformation should be done or not.
- Rejected by upstream as IR legalization with BPF verifier requirement is preferred.

- Another approach:
- An explicit option is provided with a list of transformations so those transformation can be

disabled during optimization. Details to be decided.

https://reviews.llvm.org/D147968

