


Building for Heterogeneous Systems

Alejandro Hernandez Samaniego
Microsoft



● Heterogeneous Devices

● Linux Flow vs Baremetal Flow

● Baremetal / RTOS build

● Working with SDKs (Rpi Pico / Zephyr)

● Bitbake’s Solution (Multiconfig)

● Testing

Outline



Heterogeneous Devices



● Multiple Architectures on the same device

○ Typically “Big” core runs Linux, “small” core runs 

RTOS/Baremetal

● Power Consumption

● Safety Critical

● Processing power

● Efficiency

Heterogeneous Devices



● Linux

● Linux + Baremetal

● Linux + RTOS

● Baremetal

● RTOS

● Linux + Linux (RT/Tiny)

Heterogeneous Builds



● Create cross toolchain for arch X

● Create cross toolchain for arch Y

● Cross compile package A for arch X

● Cross compile package B for arch Y

● Package Images / Binaries to be flashed

Heterogeneous Builds



Developer Workflows



Linux:

● Git repository

● Toolchain (host)

● IDE of your choice

Baremetal

● Git repository

● Vendor provided toolchain

● Vendor provided SDK

● Vendor provided IDE

Linux Flow vs Baremetal Flow

Devtool works



ARM Embedded Toolchain

● GCC

● Binutils

● Newlib

Baremetal Toolchain

Bitbake can provide it by using TCLIBC=”newlib”



Baremetal / RTOS



Baremetal / RTOS

https://github.com/ahcbb6/baremetal-helloqemu

https://github.com/ahcbb6/baremetal-helloqemu


Baremetal / RTOS



Baremetal / RTOS

https://github.com/ahcbb6/meta-freertos

https://github.com/ahcbb6/meta-freertos


Baremetal / RTOS



Baremetal / RTOS



Working with SDKs



Approach 1:

● Create a native recipe to provide an SDK

○ Fetch

○ Install

● DEPEND on it on application recipe

● Use the SDK from recipe-sysroot whilst building the application

Working with SDKs (Raspberry PI Pico / Zephyr)

https://git.yoctoproject.org/meta-zephyr/tree/meta-zephyr-core/recipes-devtools/zephyr-sdk/zephyr-sdk_0.16.3.bb
https://github.com/ahcbb6/meta-raspberrypi-baremetal/blob/master/recipes-devtools/pico-sdk/pico-sdk_git.bb

https://git.yoctoproject.org/meta-zephyr/tree/meta-zephyr-core/recipes-devtools/zephyr-sdk/zephyr-sdk_0.16.3.bb
https://github.com/ahcbb6/meta-raspberrypi-baremetal/blob/master/recipes-devtools/pico-sdk/pico-sdk_git.bb


Approach 2:

● On application recipe

○ Fetch app source code

○ Fetch SDK

○ Wire and use SDK

Working with SDKs (Raspberry PI Pico / Zephyr)



Bitbake Multiconfig



● Manually configure bitbake to parse an additional conf

● Multiconfig dependencies allow bitbake to use the same build

● Shared State can be reused across multiconfigs (native)

Bitbake Multiconfig Builds



multiconfig/dummy-aarch64.conf

Bitbake Multiconfig Builds

core-image-minimal.bb

local.conf



Bitbake Multiconfig Builds



Bitbake Multiconfig Builds



Bitbake Multiconfig Builds



Testing



● Testing different OS can be done using OpenEmbedded 

infrastructure (to some extent)

○ Designed for Linux

○ Emulate expectations from other OS

○ Treated as separate builds

■ bitbake mc:big:core-image-minimal -c testimage

■ bitbake mc:small:baremetal-app -c testimage

Testing multiple OSs



Future



● Building your own cross toolchain provides some advantages

○ Newer versions

○ Quickly fixed vs Waiting for fix to cascade

● Vendor IDE may not use upstream toolchain

● Multiconfig requires manual configuration

○ Describes the build, not the system/product.

○ Can we describe the system?

● Complicated to integrate into vendor workflows

○ How can we integrate better?

Closing thoughts


