Securing build platforms

Linux Plumbers Conference 2023
Build Micro Conference

Joshua Lock
Verizon

Build platform?

System that allows tenants
to run builds. Technically,
it is the transitive closure
of software and services
that must be trusted to
faithfully execute the
build. It includes software,
hardware, people, and
organizations.

references

External
Parameters

Interface

=

Dependencies

'

Build
Environment

]

ST

Control Plane

Build Platform

1

)

Outputs ||

Provenance

Motivation

Open source is built on trust

source + recipe + builder = artefact

> artefact produced from expected/canonical source
repository

> artefact produced using expected recipe

> artefact produced on expected/trusted builder

but, attackers are inside the network...

-'arSITGCHNICA BIZ&IT TECH SCIENCE POLICY CARS GAMING & CULTURE

Cryptocurrency launchpad hit by $3 million
supply chain attack

SushiSwap's MISO launchpad hacked via a malicious GitHub commit.

AX SHARMA - 9/17/2021, 3:10 PM

lists Downloads Documentation GetInvolved Help

PHP Mailing Lists > php.internals > Changes to Git commit workflow

Changes to Git commit workflow

From: Nikita Popov

Subject: Changes to Git commit workflow

Groups: php.doc php.internals

Hi everyone,

Date:

Sun, 28 Mar 2021 22:52:24 +0000

Yesterday (2021-03-28) two malicious commits were pushed to the php-src
repo [1] from the names of Rasmus Lerdorf and myself. We don't yet know how
exactly this happened, but everything points towards a compromise of the
git.php.net server (rather than a compromise of an individual git account).

we b m i n % Download Changelog Security Document

Webmin 1.882 to 1.921

Remote Command Execution [CVE-2019-15231] #

e Webmin releases between these versions contain a vulnerability that allows remote
command execution! Version 1.890 is vulnerable in a default install and should be
upgraded immediately - other versions are only vulnerable if changing of expired
passwords is enabled, which is not the case by default.

Either way, upgrading to version 1.930 is strongly recommended. Alternately, if running
versions 1.900 to 1.920, edit /etc/webmin/miniserv.conf , remove the passwd_mode=
line, then run /etc/webmin/restart command.

» More details..

event-stream vulnerability
explained

November 27,2018 * 11 min read

If you work with JavaScript at all, you probably saw a ton of noise yesterday
about a vulnerability in the event-stream npm package. Unfortunately, the actual

forensic analysis of the issue is buried under 600+ comments on the GitHub
issue, most of which are just people flaming about the state of npm, open
source, etc. | thought that was a shame, because the vulnerability was actually
exceptionally clever and technically interesting, and teaches some important
lessons about maintaining security in JavaScript applications. So | decided to
write an explainer detailing what happened, how the attack worked, and how the

JavaScript community can better defend against similar attacks in the future.

&Row DSTRIKE BLOG Featuredv Recentv Videosv Cat

SUNSPOT: An Implant in the Build Process

/

W7~

72
_ //

LP COdeCOV Product Docs Customers Blog Pricing Help Login

BY SENTRY

Post-Mortem [Root Cause Analysis
(April 2021)

Summary

On April 1, 2021, the Codecov team was alerted to a security event involving our Bash Uploader. The
threat actor specifically targeted the Codecov Bash Uploader and used it to deliver a malicious
payload to all Codecov users utilizing the Bash Uploader, The Codecov GitHub Action, The Codecov
CircleCl Orb, and the Codecov Bitrise Step (collectively, the “Bash Uploaders”).

What to do?

Prior art

Binary Authorization for Borg = - Send feedback

This content was last updated in September 2023, and represents the status quo as of the time it was
written. Google's security policies and systems may change going forward, as we continually improve
protection for our customers.

This document describes how we use code reviews, security infrastructure, and an enforcement
check called Binary Authorization for Borg (BAB) to help protect Google's software supply chain
against insider risk. BAB helps reduce insider risk because it ensures that production software is
reviewed and approved before it's deployed, particularly when our code can access sensitive data.
Since the original publication of this document, we have included key concepts of BAB into an open

specification called Supply chain Levels for Software Artifacts (SLSA) 4.

This document is part of a series of technical papers that describes some projects that the Google
security team have developed to help improve security, including BeyondCorp and BeyondProd. For an
overview of our infrastructure's security, see the Google infrastructure security design overview.

Adjacent spaces Adding build provenance to

T Homebrew

LEAVE A COMMENT

By William Woodruff

This is a joint post with Alpha-Omega—read their announcement post as
well!

We’re starting a new project in collaboration with Alpha-Omega and
OpenSSF to improve the transparency and security of Homebrew. This six-
month project will bring cryptographically verifiable build provenance to
homebrew-core, allowing end users and companies to proye that
Homebrew’s packages come from the official Homebrew CI/CD. In a
nutshell, Homebrew’s packages will become compliant with SLSA Build L2
(formerly known as Level 2).

Starting today, when you build your npm projects on GitHub Actions, you can publish
provenance alongside your package by including the --provenance flag. This

provenance data gives consumers a verifiable way to link a package back to its

source repository and the specific build instructions used to publish it (see example

on npmjs.com).

Provenance

Built and signed on Source Commit github.com/sigstore/sigstore-js@5b...
() GitHub Actions Build File .github/workflows/release.yml

View build summary, Public Ledger Transparency log entry.

Linux distributions too

1 Software supply chain security at SUSE & [@]

v v
Securing our software supply chain is a top priority for SUSE to protect our customers from security risks,
known and zero-day vulnerabilities. Ensuring that no threat actor can inject malicious code into our
build service systems is attested by industry-leading security certifications. Our teams continually work

to certify all SUSE products, and develop security solutions to offer our customers the highest level of
trust and reliability.

A new industry standardization effort named SLSA (Supply chain Levels for Software Artifacts), started
by Google and driven by several industry stakeholders, aims to protect the integrity of the software
supply chain.

SLSA defines four levels of assurance, going from basic requirements at level 1 to strict rules and docu-
mentation requirements at level 4.

While the SLSA standard is still in development, SUSE already considers it as a great representation of
needs for a secure product build environment, and we are adjusting our processes and tooling to meet
the requirements of the highest assurance level 4.

Flatcar Container Linux Supply Chain Security and SLSA

The Supply Chain Levels for Software Artifacts (SLSA or ‘salsa’ for short) industry standard defines a checklist of
standards and controls to prevent tampering, i ve integrity, and secure packages and infrastructure in software
projects. This document describes the Flatcar Container Linux project’s current and planned compliance with the
requirements of SLSA and provides a deep dive into the processes and mechanisms to secure the Flatcar project supply

chain.

Our assessment is that Flatcar complies with SLSA Level 3. We are working to address the few remaining requirements
for SLSA Level 4.

SLSA Threat model and requirements

Source
Integrity Build Integrity
a N
Developer Sources Build Package Consumer
1 (2 (3 (4) 6 (1) (8)

——

SLSA

Supply-chain Levels for Software Artifacts

Generalise(BinAuthBorg) — SLSA

Key components of a SLSA architecture

Ecosystem adoption:

e Trusted platform(s)
o Provenance generation
o Isolation strength

e Expectations: TOFU, producer-defined, defined in source
(i.e. Go), <your 1idea here>

e Verification: at registry/repository admission, at
install/deploy, <your idea here>

Yocto Project build platform

;mMmm$s 777777 . Upstream "
sources g
'
yocto-autobuilder-
helper Outputs ||/
[}
oe-core + __.§.___ \QN
addl layers £
7 £ sstate
.. Provenance

— " yocto-autobuilder2 |

Build Platform

SLSA for Yocto Project build platform

SLSA Build L1:
e Generate provenance as a buildbot plugin
SLSA Build L2:

e Sign generated provenance
e Attacks like CodeCov _and Webmin are detectable &

SLSA Build L3+
e TBD

References

Binary authorization for Borg:
https://cloud.google.com/docs/security/binary-authorization-for-bor
g

Supply-chain Levels for Software Artifacts (SLSA):
https://slsa.dev/

npm provenance announcement:
https://github.blog/2023-04-19-1introducing-npm-package-provenance/
Homebrew + SLSA:
https://blog.trailofbits.com/2023/11/06/adding-build-provenance-to-
homebrew/

Software supply chain security @ SUSE:
https://documentation.suse.com/sbp/server-linux/html/SBP-SLSA4/inde
x.html

Flatcar supply chain security + SLSA:
https://www.flatcar.org/docs/latest/reference/supply-chain/

https://cloud.google.com/docs/security/binary-authorization-for-borg
https://cloud.google.com/docs/security/binary-authorization-for-borg
https://slsa.dev/
https://github.blog/2023-04-19-introducing-npm-package-provenance/
https://blog.trailofbits.com/2023/11/06/adding-build-provenance-to-homebrew/
https://blog.trailofbits.com/2023/11/06/adding-build-provenance-to-homebrew/
https://documentation.suse.com/sbp/server-linux/html/SBP-SLSA4/index.html
https://documentation.suse.com/sbp/server-linux/html/SBP-SLSA4/index.html
https://www.flatcar.org/docs/latest/reference/supply-chain/

Keeping the conversation going

OpenSSF Securing Software Repositories WG (https://repos.openssf.org/)

e Build Provenance for All Package Registries:
https://repos.openssf.org/build-provenance-for-all-package-registries

e Build Provenance and Code-signing for Homebrew:
https://repos.openssf.org/proposals/build-provenance-and-code-signing-fo
r—homebrew

OpenSSF Supply Chain Integrity WG
(https://github.com/ossf/wg-supply-chain-integrity)

https://repos.openssf.org/
https://repos.openssf.org/build-provenance-for-all-package-registries
https://repos.openssf.org/proposals/build-provenance-and-code-signing-for-homebrew
https://repos.openssf.org/proposals/build-provenance-and-code-signing-for-homebrew
https://github.com/ossf/wg-supply-chain-integrity

